
DMath

Math library for Delphi, FreePascal and
Lazarus

Jean Debord

December 22, 2012

2

Contents

1 Installation and compilation 5
1.1 Introduction . 5
1.2 Installation . 5
1.3 Compilation of programs . 5
1.4 Demo programs . 6
1.5 Use of DMath as a shared library 6

1.5.1 Introduction . 6
1.5.2 Compilation of the library 7
1.5.3 Using the shared library in a program 7

2 Numeric precision 9
2.1 Numeric precision . 9
2.2 Type Float . 10
2.3 Type Complex . 10
2.4 Machine-dependent constants 10
2.5 Demo program . 11

3 Elementary functions 13
3.1 Constants . 13
3.2 Error handling . 14
3.3 Min, max, sign and exchange 14
3.4 Rounding functions . 15
3.5 Logarithms and exponentials 15
3.6 Power functions . 16
3.7 Trigonometric functions . 16
3.8 Hyperbolic functions . 16
3.9 Demo programs . 17

4 Special functions 19
4.1 Factorial . 19
4.2 Gamma function and related functions 19

3

4.2.1 Gamma function . 19
4.2.2 Incomplete Gamma function 20
4.2.3 Inverse of incomplete Gamma function 20
4.2.4 Polygamma functions 21

4.3 Beta function and related functions 21
4.4 Error function . 21
4.5 Lambert’s function . 22
4.6 Demo programs . 22

5 Probability distributions 25
5.1 Binomial distribution . 25
5.2 Poisson distribution . 26
5.3 Standard normal distribution 26
5.4 Student’s distribution . 27
5.5 Khi-2 distribution . 28
5.6 Snedecor’s distribution . 28
5.7 Exponential distribution . 29
5.8 Beta distribution . 29
5.9 Gamma distribution . 30
5.10 Demo program . 30

6 Expression evaluation 31
6.1 Numbers . 31
6.2 Operators . 31
6.3 Parentheses . 32
6.4 Variables . 32
6.5 Functions . 32
6.6 Exported functions . 33

6.6.1 InitEval . 33
6.6.2 Eval . 34
6.6.3 SetVariable . 34
6.6.4 SetFunction . 34

6.7 Demo programs . 35
6.7.1 Console programs . 35
6.7.2 GUI programs . 35

7 Graphic functions 37
7.1 Introduction . 37
7.2 BGI graphics . 37

7.2.1 Initializing graphics . 37
7.2.2 Coordinate axes . 38

4

7.2.3 Titles and fonts . 39
7.2.4 Clipping . 40
7.2.5 Curves . 40
7.2.6 Plotting a function . 43
7.2.7 Legends . 43
7.2.8 Contour plots . 43
7.2.9 Coordinate conversion 44
7.2.10 Leaving graphics . 44

7.3 Delphi graphics . 44
7.3.1 Initializing graphics . 44
7.3.2 Coordinate axes . 45
7.3.3 Titles and fonts . 45
7.3.4 Curves . 45
7.3.5 Other functions . 46

7.4 LaTeX graphics . 46
7.4.1 Initializing graphics . 46
7.4.2 Axes and titles . 48
7.4.3 Curves . 48
7.4.4 Other functions . 49

7.5 RGB / HSV conversion . 49
7.6 Demo programs . 49

7.6.1 BGI programs . 49
7.6.2 GUI programs . 50
7.6.3 LaTeX program . 50

8 String functions 51
8.1 Trim functions . 51
8.2 Fill functions . 51
8.3 Character replacement . 52
8.4 Parsing . 52
8.5 Formatting functions . 52
8.6 Delphi specific functions . 52

9 Matrices and linear equations 55
9.1 Using vectors and matrices . 55
9.2 Maximal array sizes and initialization 56
9.3 Programming conventions . 56
9.4 Error codes . 57
9.5 Gauss-Jordan elimination . 57

9.5.1 General case . 57
9.5.2 Special case . 58

5

9.6 LU decomposition . 58
9.7 QR decomposition . 59
9.8 Singular value decomposition 60
9.9 Cholesky decomposition . 61
9.10 Eigenvalues and eigenvectors 62

9.10.1 Definitions . 62
9.10.2 Symmetric matrices . 62
9.10.3 General square matrices 63

9.11 Demo programs . 64
9.11.1 Console programs . 64
9.11.2 GUI programs . 69

10 Function minimization 71
10.1 Functions of one variable . 71
10.2 Functions of several variables 72

10.2.1 Minimization along a line 73
10.2.2 Newton-Raphson method 73
10.2.3 Marquardt method . 75
10.2.4 BFGS method . 76
10.2.5 Simplex method . 77
10.2.6 Log files . 77

10.3 Demo programs . 77

11 Nonlinear equations 81
11.1 Equations in one variable . 81

11.1.1 Bisection method . 81
11.1.2 Secant method . 82
11.1.3 Newton-Raphson method 82

11.2 Equations in several variables 83
11.2.1 Newton-Raphson method 83
11.2.2 Broyden’s method . 85

11.3 Demo programs . 85

12 Polynomials 87
12.1 Polynomials . 87
12.2 Rational fractions . 87
12.3 Roots of polynomials . 87

12.3.1 Analytical methods . 87
12.3.2 Iterative method . 88

12.4 Ancillary functions . 89
12.5 Demo programs . 89

6

12.5.1 Console programs . 89
12.5.2 GUI program . 90

13 Numerical integration and differential equations 91
13.1 Integration . 91

13.1.1 Trapezoidal rule . 91
13.1.2 Gauss-Legendre integration 91

13.2 Convolution . 92
13.3 Differential equations . 92
13.4 Demo programs . 96

14 Fourier transform 99
14.1 Introduction . 99
14.2 Programming . 100

14.2.1 Array dimensioning . 100
14.2.2 FFT procedures . 100

14.3 Demo programs . 101
14.3.1 Console program . 101
14.3.2 BGI programs . 101

15 Random numbers 103
15.1 Random numbers . 103

15.1.1 Introduction . 103
15.1.2 Type definition . 104
15.1.3 Generic functions . 104
15.1.4 Specific functions . 105
15.1.5 Gaussian random numbers 106

15.2 Markov Chain Monte Carlo 107
15.3 Simulated Annealing . 110
15.4 Genetic Algorithm . 112
15.5 Demo programs . 114

16 Statistics 117
16.1 Descriptive statistics . 117

16.1.1 Minimum, maximum, mean and standard deviation . . 117
16.1.2 Median . 118
16.1.3 Correlation coefficient 118
16.1.4 Skewness and kurtosis 118

16.2 Comparison of means . 119
16.2.1 Student’s test for independent samples 119
16.2.2 Student’s test for paired samples 120

7

16.2.3 One-way analysis of variance (ANOVA) 121
16.2.4 Two-way analysis of variance 122

16.3 Comparison of variances . 124
16.3.1 Comparison of two variances 124
16.3.2 Comparison of several variances 125

16.4 Non-parametric tests . 125
16.4.1 Mann-Whitney test . 126
16.4.2 Wilcoxon test . 126
16.4.3 Kruskal-Wallis test . 127

16.5 Statistical distribution . 128
16.6 Comparison of distributions 129

16.6.1 Observed and theoretical distributions 129
16.6.2 Several observed distributions 130

16.7 Demo programs . 130
16.7.1 Console programs . 130
16.7.2 BGI program . 131

17 Linear regression 133
17.1 Straight line fit . 133
17.2 Analysis of variance . 135
17.3 Precision of parameters . 136
17.4 Probabilistic interpretation . 136
17.5 Weighted regression . 137
17.6 Programming . 138

17.6.1 Regression procedures 138
17.6.2 Quality of fit . 139

17.7 Demo programs . 139
17.7.1 BGI programs . 139
17.7.2 GUI program . 141

18 Multilinear regression and principal component analysis 143
18.1 Multilinear regression . 143

18.1.1 Normal equations . 143
18.1.2 Analysis of variance . 144
18.1.3 Precision of parameters 145
18.1.4 Probabilistic interpretation 145
18.1.5 Weighted regression . 145
18.1.6 Programming . 146

18.2 Principal component analysis 147
18.2.1 Theory . 147
18.2.2 Programming . 148

8

18.3 Demo programs . 149
18.3.1 Console program . 149
18.3.2 BGI programs . 150
18.3.3 GUI program . 151

19 Nonlinear regression 153
19.1 Theory . 153
19.2 Monte-Carlo simulation . 155
19.3 Regression procedures . 156

19.3.1 Optimization methods 156
19.3.2 Maximal number of parameters 156
19.3.3 Parameter bounds . 156
19.3.4 Check of parameters 157
19.3.5 Nonlinear regression 157
19.3.6 Monte-Carlo simulation 158

19.4 Demo programs . 158

20 Library of nonlinear regression models 161
20.1 Common features . 162

20.1.1 Procedures . 162
20.1.2 Optimization methods and initial parameters 162

20.2 Regression models . 163
20.2.1 Rational fractions . 163
20.2.2 Sums of exponentials 164
20.2.3 Increasing exponential 164
20.2.4 Exponential + Linear 165
20.2.5 Logistic functions . 165
20.2.6 Power function . 166
20.2.7 Gamma distribution 166
20.2.8 Michaelis equation . 167
20.2.9 Integrated Michaelis equation 167
20.2.10 Hill equation . 168
20.2.11 Acid-base titration curve 169

20.3 Demo programs . 169
20.3.1 BGI programs . 169
20.3.2 GUI program . 171

21 Complex numbers and functions 173
21.1 Introduction to complex numbers 173

21.1.1 Definitions . 173
21.1.2 Polar form . 174

9

21.1.3 Exponential form . 174
21.2 Type definition . 175
21.3 Error handling . 175
21.4 Number construction . 175
21.5 Sign and exchange . 176
21.6 Modulus and argument . 176
21.7 Other functions . 176
21.8 Arithmetic functions . 176
21.9 Polynomials . 177
21.10Logarithm and exponential . 177
21.11Power functions . 177
21.12Complex roots . 178
21.13Trigonometric functions . 178
21.14Hyperbolic functions . 178
21.15Gamma function . 179
21.16Demo program . 179

22 Fractals and chaos 181
22.1 Mandelbrot and Julia sets . 181

22.1.1 Introduction . 181
22.1.2 The Mandelbrot set . 181
22.1.3 The Julia sets . 183
22.1.4 Variation of the exponent 183
22.1.5 Theoretical aspects . 184
22.1.6 Programming aspects 185
22.1.7 Demo program . 188
22.1.8 Examples . 190

22.2 The quadratic iterator . 191
22.3 Links . 193

10

Chapter 1

Installation and compilation

1.1 Introduction

Welcome to DMath, a mathematical package for Delphi, FreePascal (FPC)
and Lazarus. This chapter explains how to install this library and how to
compile a program which uses it.

1.2 Installation

Extract the archive dmat[...].zip (where [...] stands for version number)
in a given directory.

Be sure to preserve the directory structure. For instance, if you use
pkunzip, add the option -d (i. e. pkunzip -d dmat[...].zip).

1.3 Compilation of programs

Programs using DMath can be compiled with Delphi under Windows and
with FreePascal (FPC) or Lazarus under Windows and Linux.

Note: with FPC/Lazarus, the programs should be compiled in the Delphi
mode (option -Mdelphi) to ensure that the Integer type is 32-bit (modify
the FPC configuration file if necessary).

The uses clause must include all the DMath units needed by the pro-
gram. Unit utypes is usually present, together with the units containing
the routines called by the program. See file filelist.txt in the units

subdirectory for a list of available units and procedures.

11

For instance, a program which uses the Gamma function (defined in unit
ugamma) will have the following line:

uses utypes, ugamma;

The path to the DMath units must be specified in the configuration file or
on the command line. For instance:

dcc32 prog.pas -cc -U\dmath\units

or:

fpc prog.pas -Mdelphi -Fu\dmath\units

assuming that you have installed the library in \dmath

1.4 Demo programs

Some demo programs are supplied with DMath. They can be classified into
3 groups:

1. Console programs, in the demo\console subdirectory: these are command-
line programs which don’t display graphics. They can be compiled with
FPC, or with Delphi with the option -cc

2. BGI programs, in the demo\bgi subdirectory: these are command-line
programs which display BGI graphics. These programs are for FPC
only.

3. GUI programs, in the demo\gui subdirectory: these are graphic pro-
grams which have been designed with Delphi but should be compatible
with Lazarus.

1.5 Use of DMath as a shared library

1.5.1 Introduction

DMath can be used as a shared library, such as a Windows DLL. Compilation
scripts are supplied in the dll subdirectory to generate the shared library
file, the interface file and (in the case of FPC/Lazarus) the object file. The
following table displays the different possibilities:

12

Compiler / OS Script Shared lib. Interface Object
Delphi / Windows dcompil.bat dmath.dll dmath.dcu

FPC / Windows fpcompil.bat dmath.dll dmath.ppu dmath.o

Lazarus / Windows lcompil.bat dmath.dll dmath.ppu dmath.o

FPC / Linux fpcompil.sh libdmath.so dmath.ppu dmath.o

Lazarus / Linux lcompil.sh libdmath.so dmath.ppu dmath.o

Notes:

1. The only difference between the FPC and Lazarus versions concern
the graphic library. With FPC it uses the Borland Graphics Interface
(BGI) by means of the built-in graph unit, while with Lazarus it uses
the graphic components (e. g. a TImage component).

2. BGI graphics will work under Linux only if SVGAlib is installed and
functional.

3. Compilation with Lazarus may require the path to the Lazarus Graphics
unit. This path may be added to the FPC configuration file.

4. Some FPC versions may generate an additional file: libimpdmath.a

which is an import library.

1.5.2 Compilation of the library

In order to compile the library:

1. Run the appropriate script from the command line in the dll subdi-
rectory.

2. Copy the shared library file to the appropriate directory, e. g.
\Windows\System or /usr/lib

3. Copy the interface file, the object file and the import library (if any)
to the directory where the compiler stores its units (or to any directory
which is in the unit search path)

1.5.3 Using the shared library in a program

In order to use the shared library in a program, add the line:

uses dmath;

at the beginning of the program. The compilation can be done by:

13

dcc32 prog.pas -cc

or:

fpc prog.pas -Mdelphi

For the demo programs, the default method uses the individual units.
However, it is possible to use the shared library by defining the symbol
USE_DLL.

14

Chapter 2

Numeric precision

This chapter explains how to set the mathematical precision for the compu-
tations involving real numbers.

2.1 Numeric precision

DMath allows you to use three floating point types Single (4-byte real,
about 6 significant digits), Double (8-byte real, about 15 significant digits),
or Extended (10-byte real, about 18 significant digits).

The choice of a given type is done by defining a compilation symbol:
SINGLEREAL, DOUBLEREAL or EXTENDEDREAL.

The symbol may be defined on the command line, using the -d option (e.
g. dcc32 prog.pas -dEXTENDEDREAL ...) or in the IDE.

If no symbol is defined, then type Double will be automatically selected.
It is therefore the default type.

If you wish to compare the results given by a DMath program with those
of a reference program written in another language (e. g. Fortran), be sure
that the two programs have been compiled with the same numeric precision.

15

2.2 Type Float

A type Float is defined in unit utypes. It corresponds to Single, Double
or Extended, according to the compilation options.

So, a program which uses real variables should begin with something like:

uses

utypes;

var

X : Float;

2.3 Type Complex

For complex numbers, a Complex type is defined as follows:

type Complex = record

X, Y : Float;

end;

2.4 Machine-dependent constants

The following constants are defined in unit utypes :
Constant Meaning
MachEp The smallest real number such that (1.0 + MachEp) has a

different representation (in the computer memory) than 1.0;
it may be viewed as a measure of the numeric precision
which can be reached within the given floating point type.

MaxNum The highest real number which can be represented.
MinNum The lowest positive real number which can be represented.
MaxLog The highest real number X for which Exp(X)

can be computed without overflow.
MinLog The lowest (negative) real number X for which Exp(X)

can be computed without underflow.
MaxFac The highest integer for which the factorial can be computed.
MaxGam The highest real number for which the Gamma function

can be computed.
MaxLgm The highest real number for which the logarithm

of the Gamma function can be computed.

16

2.5 Demo program

The program testmach.pas located in the demo\console\fmath subdirec-
tory checks that the machine-dependent constants are correctly handled by
the computer.

This program lists the sizes of the integer and floating point types, to-
gether with the values of the machine-dependent constants, and computes
the following quantities:

Exp(MinLog) Should be approximately equal to MinNum

Ln(MinNum) Should be approximately equal to MinLog

Exp(MaxLog) Should be approximately equal to MaxNum

Ln(MaxNum) Should be approximately equal to MaxLog

Fact(MaxFac)

Gamma(MaxGam) Should be computed without overflow.
LnGamma(MaxLgm)

The following results were obtained with FPC 2.6.0 in double precision:

Integer type = Integer (4 bytes)

Long Integer type = LongInt (4 bytes)

Floating point type = Double (8 bytes)

Complex type = Complex (16 bytes)

MachEp = 2.2204460492503130E-0016

MinNum = 2.2250738585072020E-0308

Exp(MinLog) = 2.2250738585072152E-0308

MinLog = -7.0839641853226410E+0002

Ln(MinNum) = -7.0839641853226411E+0002

MaxNum = 1.7976931348623150E+0308

Exp(MaxLog) = 1.7976931348623216E+0308

MaxLog = 7.0978271289338400E+0002

Ln(MaxNum) = 7.0978271289338400E+0002

MaxFac = 170

Fact(MaxFac) = 7.25741561530800E+306

17

MaxGam = 1.7162437695630200E+0002

Gamma(MaxGam) = 1.79769313486231E+308

MaxLgm = 2.5563480000000000E+0305

LnGamma(MaxLgm) = 1.79513667145944E+308

18

Chapter 3

Elementary functions

This chapter describes the mathematical constants and elementary mathe-
matical functions available in DMath.

3.1 Constants

The following mathematical constants are defined in unit utypes :

Constant Value Meaning
Pi 3.14159... π
Ln2 0.69314... ln 2
Ln10 2.30258... ln 10
LnPi 1.14472... lnπ

InvLn2 1.44269... 1/ ln 2
InvLn10 0.43429... 1/ ln 10
TwoPi 6.28318... 2π
PiDiv2 1.57079... π/2
SqrtPi 1.77245...

√
π

Sqrt2Pi 2.50662...
√

2π

InvSqrt2Pi 0.39894... 1/
√

2π

LnSqrt2Pi 0.91893... ln
√

2π
Ln2PiDiv2 0.91893... (ln 2π)/2

Sqrt2 1.41421...
√

2

Sqrt2Div2 0.70710...
√

2/2

Gold 1.61803... Golden Ratio = (1 +
√

5)/2
CGold 0.38196... 2 - Gold

Note : The constants are stored with 20 to 21 significant digits. So, they
will match the highest degree of precision available (i.e. type Extended).

19

3.2 Error handling

The function MathErr() (also defined in utypes) returns the error code from
the last function evaluation. It must be checked immediately after a function
call:

Y := f(X); { f is one of the functions of the library }

if MathErr = FOk then ...

If an error occurs, a default value is attributed to the function. The
possible error codes are the following:

Error code Value Meaning
FOk 0 No error

FDomain -1 Argument domain error
FSing -2 Function singularity

FOverflow -3 Overflow range error
FUnderflow -4 Underflow range error

FTLoss -5 Total loss of precision
FPLoss -6 Partial loss of precision

3.3 Min, max, sign and exchange

The following functions are defined in unit uminmax :

• Function FMin(X, Y) returns the minimum of two real numbers X, Y .

• Function IMin(X, Y) returns the minimum of two integer numbers
X, Y .

• Function FMax(X, Y) returns the maximum of two real numbers X, Y .

• Function IMax(X, Y) returns the maximum of two integer numbers
X, Y .

• Function Sgn(X) returns 1 if X ≥ 0, -1 if X < 0.

• Function Sgn0(X) returns 1 if X > 0, 0 if X = 0, -1 if X < 0.

• Function DSgn(A, B) transfers the sign of B to A. It is therefore
equivalent to: Sgn(B) * Abs(A)

• Function FSwap(X, Y) exchanges two real numbers X, Y .

• Function ISwap(X, Y) exchanges two integer numbers X, Y .

20

3.4 Rounding functions

The following functions are defined in unit uround :

• Function RoundN(X, N) will round X to N decimal places. N must be
between 0 and 16.

• Function Floor(X) returns the lowest integer ≥ X

• Function Ceil(X) returns the highest integer ≤ X

3.5 Logarithms and exponentials

These functions are defined in unit umath.

The functions Expo and Log may be used instead of the standard functions
Exp and Ln, when it is necessary to check the range of the argument. The
new function performs the required tests and calls the standard function if
the argument is within the acceptable limits (for instance, X > 0 for Ln(X));
otherwise, the function returns a default value and MathErr() will return
the appropriate error code.

Calling these functions is more time-consuming than calling the standard
Exp and Ln, because each function involves several tests and two procedure
calls (one to the function itself and another to the standard Exp or Ln).
Hence, if the program must compute lots of logarithms or exponentials, it
may be more efficient to use the standard functions Exp and Ln. In this case,
however, the error handling must be done by the main program.

The same remark applies to the other logarithmic and exponential func-
tions defined in the library:

Function Definition Pascal code
Exp2(X) 2X Exp(X * Ln2)

Exp10(X) 10X Exp(X * Ln10)

Log2(X) log2X Ln(X) * InvLn2

Log10(X) log10X Ln(X) * InvLn10

LogA(X, A) logAX Ln(X) / Ln(A)

Here, too, it may be more efficient to use the Pascal code inline rather
than calling the DMath function, but the error control will be lost.

21

3.6 Power functions

The following functions are also defined in unit umath :

• Function Power(X, Y) returns XY . Y may be integer or real, but if Y
is real then X cannot be negative.

• Function IntPower(X, N) returns XN where N is integer.

Note: To ensure the continuity of the function XX when X → 0, the
value 00 has been set to 1.

3.7 Trigonometric functions

In addition to the standard Pascal functions Sin, Cos and ArcTan, DMath
provides the following functions in unit utrigo :

Function Definition

Tan(X) sinX
cosX

X 6= (2k + 1)π
2

ArcSin(X) arctan X√
1−X2 (−1 ≤ X ≤ 1)

ArcCos(X) π
2
− arcsinX (−1 ≤ X ≤ 1)

ArcTan2(Y, X) arctan Y
X

, result in [−π, π]

Pythag(X, Y)
√
X2 + Y 2

FixAngle(Theta) Returns the angle Theta in the range [−π, π]

Note: If (X, Y) are the cartesian coordinates of a point in the plane, its
polar coordinates are:

R := Pythag(X, Y);

Theta := ArcTan2(Y, X)

3.8 Hyperbolic functions

The following functions are available in unit uhyper :

22

Function Definition

Sinh(X) 1
2
(eX − e−X)

Cosh(X) 1
2
(eX + e−X)

Tanh(X) sinhX
coshX

ArcSinh(X) ln(X +
√
X2 + 1)

ArcCosh(X) ln(X +
√
X2 − 1) X ≥ 1

ArcTanh(X) 1
2

ln X+1
X−1

−1 < X < 1

In addition, the subroutine SinhCosh(X, SinhX, CoshX) computes the
hyperbolic sine and cosine simultaneously, saving the computation of one
exponential.

3.9 Demo programs

These program are located in the demo\console\fmath subdirectory.

Function accuracy

Program testfunc.pas checks the accuracy of the elementary functions.
For each function, 20 random arguments are picked, then the function is
computed, the reciprocal function is applied to the result, and the relative
error between this last result and the original argument is computed. This
error should be around 10−15 in double precision.

Computation speed

Program speed.pas measures the execution time of the built-in mathemat-
ical functions, as well as the additional functions provided in DMath. The
results are printed on the screen and saved in a text file named speed.out.

23

24

Chapter 4

Special functions

This chapter describes the special functions available in DMath. Most of
them have been adapted from C codes in the Cephes library by S. Moshier
(http://www.moshier.net).

4.1 Factorial

Function Fact(N), defined in unit ufact, returns the factorial of the non-
negative integer N , also noted N ! :

N ! = 1× 2× · · · ×N 0! = 1

The constant MaxFac defines the highest integer for which the factorial
can be computed (See chapter 2, p. 10).

4.2 Gamma function and related functions

4.2.1 Gamma function

The following functions are defined in unit ugamma :

• Function Gamma(X) returns the Gamma function, defined by:

Γ(X) =
∫ ∞

0
tX−1e−tdt

This function is related to the factorial by:

N ! = Γ(N + 1)

25

The Gamma function is indefinite for X = 0 and for negative integer
values of X. It is positive for X > 0. For X < 0 the Gamma function
changes its sign whenever X crosses an integer value. More precisely, if
X is an even negative integer, Γ(X) is positive on the interval]X,X+1[,
otherwise it is negative.

• Function SgnGamma(X) returns the sign of the Gamma function for a
given value of X.

• Function LnGamma(X) returns the natural logarithm of the Gamma
function.

• Function Stirling(X) approximates Gamma(X) with Stirling’s formula,
for X ≥ 30.

• Function StirLog(X) approximates LnGamma(X) with Stirling’s for-
mula, for X ≥ 13.

The constants MaxGam and MaxLgm define the highest values for which
the Gamma function and its logarithm, respectively, can be computed (See
chapter 2, p. 10).

4.2.2 Incomplete Gamma function

The following functions are defined in unit uigamma :

• Function IGamma(A, X) returns the incomplete Gamma function, de-
fined by:

1

Γ(A)

∫ X

0
tA−1e−tdt A > 0, X > 0

• Function JGamma(A, X) returns the complement of the incomplete Gamma
function, defined by:

1

Γ(A)

∫ ∞
X

tA−1e−tdt

Although formally equivalent to 1.0 - IGamma(A, X), this function
uses specific algorithms to minimize roundoff errors.

4.2.3 Inverse of incomplete Gamma function

Function InvGamma(A, Y), defined in unit uinvgam, returns X such that
IGamma(A, X) = Y

26

4.2.4 Polygamma functions

The polygamma function of order n, denoted ψn(x), is the n-th derivative of
the logarithm of the gamma function:

ψn(x) =
dn

dxn
ln Γ(x)

The cases n = 1 and n = 2 are implemented in DMath as DiGamma(X)

and TriGamma(X). These functions are defined in unit udigamma.

4.3 Beta function and related functions

• Function Beta(X, Y), defined in unit ubeta, returns the Beta function,
defined by:

B(X, Y) =
∫ 1

0
tX−1(1− t)Y−1dt =

Γ(X)Γ(Y)

Γ(X + Y)

(Here B denotes the uppercase greek letter ‘Beta’ !)

• Function IBeta(A, B, X), defined in unit uibeta, returns the incom-
plete Beta function, defined by:

1

B(A,B)

∫ X

0
tA−1(1− t)B−1dt A > 0, B > 0, 0 ≤ X ≤ 1

• Function InvBeta(A, B, Y), defined in unit uinvbeta, returns X such
that IBeta(A, B, X) = Y

4.4 Error function

The following functions are defined in unit uigamma :

• Function Erf(X) returns the error function, defined by:

erf(X) =
2√
π

∫ X

0
exp(−t2)dt

• Function Erfc(X) returns the complement of the error function, defined
by:

erfc(X) =
2√
π

∫ ∞
X

exp(−t2)dt

27

4.5 Lambert’s function

Lambert’s W function is the reciprocal of the function xex. That is, if y =
W (x), then x = yey. Lambert’s function is defined for x ≥ −1/e, with
W (−1/e) = −1. When −1/e < x < 0, the function has two values; the value
W (x) > −1 defines the upper branch, the value W (x) < −1 defines the lower
branch.

The function LambertW(X, UBranch, Offset), defined in unit ulambert,
computes Lambert’s function.

• X is the argument of the function (must be ≥ −1/e)

• UBranch is a boolean parameter which must be set to True for com-
puting the upper branch of the function and to False for computing
the lower branch.

• Offset is a boolean parameter indicating if X is an offset from −1/e.
In this case, W (X−1/e) will be computed (with X > 0). Using offsets
improves the accuracy of the computation if the argument is near −1/e.

The code for Lambert’s function has been translated from a Fortran pro-
gram written by Barry et al (http://www.netlib.org/toms/743).

4.6 Demo programs

These program are located in the demo\console\fmath subdirectory.

• Program specfunc.pas, checks the accuracy of the functions Fact,
Binomial, Gamma, IGamma, Erf, Erfc, Beta, IBeta, DiGamma and TriGamma

Most of the data come from Numerical Recipes (http://www.nr.com),
but the reference values have been re-computed to 20 significant dig-
its with the Maple software (http://www.maplesoft.com) and the
Gamma values for negative arguments have been corrected.

Each program computes the values of a given function for a set of
predefined arguments and compares the results to the reference values.
Then it displays the number of correct digits found. This number
should be between 14 and 16 in double precision.

28

• Program testw.pas checks the accuracy of the Lambert function.

The program computes Lambert’s function for a set of pre-defined ar-
guments and compares the results with reference values. It displays
the number of exact digits found. This number should correspond with
the numeric precision used (14-16 digits in double precision).

This program has been translated from a Fortran program written by
Barry et al (http://www.netlib.org/toms/743).

29

30

Chapter 5

Probability distributions

This chapter describes the functions available in DMath to compute proba-
bility distributions. Most of them are applications of the special functions
studied in chapter 4.

5.1 Binomial distribution

Binomial distribution arises when a trial has two possible outcomes: ‘failure’
or ‘success’. If the trial is repeated N times, the random variable X is the
number of successes.

• Function Binomial(N,K), defined in unit ubinom, returns the binomial
coefficient

(
N
K

)
, which is defined by:(

N

K

)
=

N !

K!(N −K)!
0 ≤ K ≤ N

• Function PBinom(N, P, K), also defined in ubinom, returns the proba-
bility of obtaining K successes among N repetitions, if the probability
of success is P .

Prob(X = K) =

(
N

K

)
PKQN−K with Q = 1− P

• Function FBinom(N, P, K), defined in unit uibtdist, returns the prob-
ability of obtaining at most K successes among N repetitions, i. e.
Prob(X ≤ K). This is called the cumulative probability function and
is defined by:

Prob(X ≤ K) =
K∑
k=0

(
N

k

)
P kQN−k = 1− IB(K + 1, N −K,P)

31

where IB denotes the incomplete Beta function.

The mean of the binomial distribution is µ = NP , its variance is σ2 =
NPQ. The standard deviation is therefore σ =

√
NPQ.

5.2 Poisson distribution

The Poisson distribution can be considered as the limit of the binomial dis-
tribution when N → ∞ and P → 0 while the mean µ = NP remains small
(say N ≥ 30, P ≤ 0.1, NP ≤ 10)

• Function PPoisson(Mu, K), defined in unit upoidist, returns the prob-
ability of observing the value K if the mean is µ. It is defined by:

Prob(X = K) = e−µ
µK

K!

• Function FPoisson(Mu, K), defined in unit uigmdist, gives the cumu-
lative probability function, defined by:

Prob(X ≤ K) =
K∑
k=0

e−µ
µk

k!
= 1− IΓ(K + 1, µ)

where IΓ denotes the incomplete Gamma function.

5.3 Standard normal distribution

The normal distribution (a. k. a. Gauss distribution or Laplace-Gauss
distribution) corresponds to the classical bell-shaped curve. It may also be
considered as a limit of the binomial distribution when N is sufficiently ‘large’
while P and Q are sufficiently different from 0 or 1. (say N ≥ 30, NP ≥ 5,
NQ ≥ 5).

The normal distribution with mean µ and standard deviation σ is denoted
N (µ, σ) with µ = NP and σ =

√
NPQ. The special case N (0, 1) is called

the standard normal distribution.

• Function DNorm(X), defined in unit unormal, returns the probability
density of the standard normal distribution, defined by:

f(X) =
1√
2π

exp

(
−X

2

2

)

The graph of this function is the bell-shaped curve.

32

• Function FNorm(X), defined in unit uigmdist, returns the cumulative
probability function:

Φ(X) = Prob(U ≤ X) =
∫ X

−∞
f(x)dx =

1

2

[
1 + erf

(
X

√
2

2

)]

where U denotes the standard normal variable and erf the error func-
tion.

• Function PNorm(X), also defined in uigmdist, returns the probability
that the standard normal variable exceeds X in absolute value, i. e.
Prob(|U | > X).

• Function InvNorm(P), defined in unit uinvnorm, returns the value X
such that Φ(X) = P .

5.4 Student’s distribution

Student’s distribution is widely used in Statistics, for instance to estimate
the mean of a population from a sample taken from this population. The
distribution depends on an integer parameter ν called the number of degrees
of freedom (in the mean estimation problem, ν = n − 1 where n is the
number of individuals in the sample). When ν is large (say > 30) the Student
distribution is approximately equal to the standard normal distribution.

• Function DStudent(Nu, X), defined in unit ugamdist, returns the prob-
ability density of the Student distribution with Nu degrees of freedom,
defined by:

fν(X) =
1

ν1/2 B
(
ν
2
, 1

2

) · (1 +
X2

ν

)− ν+1
2

where B denotes the Beta function.

• Function FStudent(Nu, X), defined in unit uibtdist, returns the cu-
mulative probability function:

Φν(X) = Prob(t ≤ X) =
∫ X

−∞
fν(x)dx =

{
I/2 ifX ≤ 0
1− I/2 ifX > 0

where t denotes the Student variable and I = IB
(
ν
2
, 1

2
, ν
ν+X2

)
• Function PStudent(Nu, X), also defined in uibtdist, returns the prob-

ability that the Student variable t exceeds X in absolute value, i. e.
Prob(|t| > X).

33

• Function InvStudent(Nu, P), defined in unit uinvbeta, returns the
value X such that Φν(X) = P .

5.5 Khi-2 distribution

The χ2 distribution is a special case of the Gamma distribution (see below).
It depends on an integer parameter ν which is the number of degrees of
freedom.

• Function DKhi2(Nu, X), defined in unit ugamdist, returns the proba-
bility density of the χ2 distribution with Nu degrees of freedom, defined
by:

fν(X) =
1

2
ν
2 Γ

(
ν
2

) ·X ν
2
−1 · exp

(
−X

2

)
(X > 0)

• Function FKhi2(Nu, X), defined in unit uigmdist, returns the cumu-
lative probability function:

Φν(X) = Prob(χ2 ≤ X) =
∫ X

0
fν(x)dx = IΓ

(
ν

2
,
X

2

)
where IΓ denotes the incomplete Gamma function.

• Function PKhi2(Nu, X), also defined in uigmdist, returns the proba-
bility that the χ2 variable exceeds X, i. e. Prob(χ2 > X).

• Function InvKhi2(Nu, P), defined in unit uinvgam, returns the value
X such that Φν(X) = P .

5.6 Snedecor’s distribution

The Snedecor (or Fisher-Snedecor) distribution is used mainly to compare
two variances. It depends on two integer parameters ν1 and ν2 which are the
degrees of freedom associated with the variances.

• Function DSnedecor(Nu1, Nu2, X), defined in unit ugamdist, returns
the probability density of the Snedecor distribution with Nu1 and Nu2

degrees of freedom, defined by:

fν1,ν2(X) =
1

B
(
ν1
2
, ν2

2

) ·(ν1

ν2

) ν1
2

·X
ν1
2
−1 ·

(
1 +

ν1

ν2

X
)− ν1+ν2

2

(X > 0)

34

• Function FSnedecor(Nu1, Nu2, X), defined in unit uibtdist, returns
the cumulative probability function:

Φν1,ν2(X) = Prob(F ≤ X) =
∫ X

0
fν1,ν2(x)dx = 1−IB

(
ν2

2
,
ν1

2
,

ν2

ν2 + ν1X

)
where F denotes the Snedecor variable.

• Function PSnedecor(Nu1, Nu2, X), also defined in uibtdist, returns
the probability that the Snedecor variable F exceeds X, i. e. Prob(F >
X).

• Function InvSnedecor(Nu1, Nu2, P), defined in unit uinvbeta, re-
turns the value X such that Φν1,ν2(X) = P .

5.7 Exponential distribution

The exponential distribution is used in many applications (radioactivity,
chemical kinetics...). It depends on a positive real parameter A.

The following functions are defined in unit uexpdist :

• Function DExpo(A, X) returns the probability density of the exponen-
tial distribution with parameter A, defined by:

fA(X) = A exp(−AX) (X > 0)

• Function FExpo(A, X) returns the cumulative probability function:

ΦA(X) =
∫ X

0
fA(x)dx = 1− exp(−AX)

5.8 Beta distribution

The Beta distribution is often used to describe the distribution of a random
variable defined on the unit interval [0, 1]. It depends on two positive real
parameters A and B.

• Function DBeta(A, B, X), defined in unit ugamdist, returns the prob-
ability density of the Beta distribution with parameters A and B, defined
by:

fA,B(X) =
1

B(A,B)
·XA−1 · (1−X)B−1 (0 ≤ X ≤ 1)

35

• Function FBeta(A, B, X), defined in unit uibtdist, returns the cu-
mulative probability function:

ΦA,B(X) =
∫ X

0
fA,B(x)dx = IB(A,B,X)

5.9 Gamma distribution

The Gamma distribution is often used to describe the distribution of a ran-
dom variable defined on the positive real axis. It depends on two positive
real parameters A and B.

• Function DGamma(A, B, X), defined in unit ugamdist, returns the prob-
ability density of the Gamma distribution with parameters A and B,
defined by:

fA,B(X) =
BA

Γ(A)
·XA−1 · exp(−BX) (X > 0)

• Function FGamma(A, B, X), defined in unit uigmdist, returns the cu-
mulative probability function:

ΦA,B(X) =
∫ X

0
fA,B(x)dx = IΓ(A,BX)

The χ2 distribution is a special case of the Gamma distribution, with
A = ν/2 and B = 1/2.

5.10 Demo program

Program binom.pas, located in the demo\console\proba subdirectory, com-
pares the cumulative probabilities of the binomial distribution, estimated by
function FBinom, with the values obtained by summing up the individual
probabilities.

36

Chapter 6

Expression evaluation

DMath provides a math parser for evaluating expressions at run time. The
expression is a character string which may contain numbers, operators, paren-
theses, variables and functions as described below.

6.1 Numbers

Integers (32-bit, signed) and reals (Float type) must be entered in decimal.
The exponential notation (e. g. 6.62E-34) is not accepted. You must write
6.62 * 10^(- 34).

6.2 Operators

+ addition, unary plus
- subtraction, unary minus
∗ multiplication
/ division
\ integer division
% modulus operator
ˆ exponentiation
> shift bit right
< shift bit left
& bitwise AND
| bitwise OR
$ bitwise XOR
! bitwise NOT
@ bitwise IMP
= bitwise EQV

37

Operator precedence

! bitwise NOT (highest precedence, evaluated first)
& bitwise AND
| bitwise OR
$ bitwise XOR
= bitwise EQV
@ bitwise IMP
ˆ exponentiation
+ - unary plus, unary minus
∗ / multiplication, division
\ integer division
% modulus operator
<> shift bit left, shift bit right
+ - addition, subtraction (lowest precedence, evaluated last)

6.3 Parentheses

Parentheses can be used to override operator precedence, but within paren-
theses operator precedence is used.

6.4 Variables

There are 26 variables from A to Z

6.5 Functions

Function arguments must be enclosed within parentheses. These parentheses
must be present even if there is no argument passed to the function.

There are 58 built-in functions available. Most of them have been de-
scribed in the previous chapters. There are, however, some differences which
are documented below.

• Standard functions :

Abs(X), Sgn(X), Int(X), Sqrt(X)

Exp(X), Ln(X), Log10(X), Log2(X)

Fact(N), Binomial(N, K), Rnd()

Rnd() returns a 32-bit real random number in [0, 1) from the ‘Mersenne
Twister’ generator (see chapter 15).

38

• Trigonometric functions :

Deg(X), Rad(X)

Sin(X), Cos(X), Tan(X)

ArcSin(X), ArcCos(X), ArcTan(X), ArcTan2(Y, X)

Deg(X) and Rad(X) convert their argument to degrees and radians,
respectively.

• Hyperbolic functions :

Sinh(X), Cosh(X), Tanh(X)

ArcSinh(X), ArcCosh(X), ArcTanh(X)

• Special functions :

Gamma(X), IGamma(A, X)

Beta(X, Y), IBeta(A, B, X)

Erf(X), LambertW(X)

LambertW(X) returns only the upper branch of the Lambert function.

• Probability functions :

PBinom(N, P, K), FBinom(N, P, K)

PPoisson(Mu, K), FPoisson(Mu, K)

DExpo(A, X), FExpo(A, X)

DGamma(A, B, X), FGamma(A, B, X)

DBeta(A, B, X), FBeta(A, B, X)

DNorm(X), FNorm(X), PNorm(X), InvNorm(P)

DStudent(N, X), FStudent(N, X)

PStudent(N, X), InvStudent(N, P)

DKhi2(N, X), FKhi2(N, X), PKhi2(N, X), InvKhi2(N, P)

DSnedecor(N1, N2, X), FSnedecor(N1, N2, X)

PSnedecor(N1, N2, X), InvSnedecor(N1, N2, P)

6.6 Exported functions

These functions are defined in unit ueval.

6.6.1 InitEval

This function initializes the built-in functions and returns their number. It
also re-initializes the random number generator. It is mandatory to call this
function before using the other functions.

39

var

N : Integer;

begin

N := InitEval;

Writeln(N, ’ functions initialized’);

...

6.6.2 Eval

This function evaluates an expression passed as a character string and returns
its value.

var

X : Float;

S : String;

begin

InitEval;

Write(’Enter an expression : ’);

Readln(S);

X := Eval(S);

Writeln(’ = ’, X);

...

6.6.3 SetVariable

This procedure assigns a value to a variable. The name of the variable is
case-insensitive.

SetVariable(’x’, 1);

6.6.4 SetFunction

This procedure adds a new function to the parser. Up to 42 functions can
be added, with a maximum of 26 arguments for each function. The function
declaration must conform to the internal type:

type TWrapper = function(ArgC : TArgC; ArgV : TVector) : Float;

where ArgC is the argument count, TArgC denotes the interval 1..26 and
ArgV contains the argument values, from ArgV[1] to ArgV[ArgC].

40

function Average(N : TArgC; X : TVector) : Float;

var

I : Integer;

S : Float;

begin

S := 0.0;

for I := 1 to N do

S := S + X[I];

Average := S / N;

end;

begin

SetFunction(’Average’, Average);

Writeln(Eval(’Average(1, 2, 3)’));

....

6.7 Demo programs

6.7.1 Console programs

These programs are located in demo\console\fmath

• Program eval1.pas evaluates a mathematical expression entered at
run time.

• Program eval2.pas demonstrates the math parser and shows how to
add variables and functions from the calling program.

6.7.2 GUI programs

• Program calc.dpr (in demo\gui\calc) implements a scientific calcu-
lator with 4 variables.

• Program probcalc.dpr (in demo\gui\probcalc) implements a prob-
ability calculator.

41

42

Chapter 7

Graphic functions

7.1 Introduction

DMath provides some graphic routines for plotting curves. They are available
in three versions :

• a BGI version, based on Borland’s Graph unit. This version is provided
in unit uplot. It can be used with FreePascal (FPC).

The BGI drivers and fonts are not distributed with DMath. They must
be obtained from one of the Borland compilers which are freely avail-
able on the Internet, for instance Turbo Pascal 7 : http://pascal.

developpez.com/compilateurs/tp7/

• a Delphi / Lazarus version, provided in unit uwinplot.

• a LaTeX version, which uses the pstricks extension to allow the cre-
ation of PostScript files. This version is provided in unit utexplot.

In addition, routines for converting between the RGB and HSV color
spaces are provided in unit uhsvrgb. They can be used with all versions.

Note : a shared library compiled from the scripts in the dll subdirectory
will contain either the BGI or Delphi version, along with the LaTeX version.

7.2 BGI graphics

7.2.1 Initializing graphics

• Function InitGraphics(Pilot, Mode, BGIPath) will place the com-
puter in the graphic mode defined by the parameters Pilot (which

43

corresponds to the graphic driver) and Mode. BGIPath is a string defin-
ing the directory in which the BGI drivers and fonts are stored.

The function returns True if the initialization is successful.

Example : InitGraphics(9, 2, ’C:\TP\BGI’) will select the VGA
mode, 640 × 480 resolution with 16 colors (see the documentation of
the Graph unit for a list of available modes).

• Procedure SetWindow(X1, X2, Y1, Y2, GraphBorder) defines the size
of the graphic window.

X1, X2, Y1, Y2 are the window coordinates in %

GraphBorder is a boolean parameter which must be set to True for
plotting a border around the window.

This function must be called after InitGraphics

Example : SetWindow(15, 85, 15, 85, True)

7.2.2 Coordinate axes

DMath allows to plot curves in either linear or logarithmic coordinates. The
type of scale may be selected by using the predefined symbols LinScale or
LogScale

For each axis, the scale is specified by:

• SetOxScale(Scale, OxMin, OxMax, OxStep)

• SetOyScale(Scale, OyMin, OyMax, OyStep)

where Scale may be either LinScale or LogScale, and the other param-
eters define the bounds and step on the axis.

Default values are: linear scale from 0 to 1 with a step of 0.2. These
values will be used automatically if the calls to SetOxScale or SetOyScale

are omitted.

An automatic scale, suitable for plotting all the values in an array X[Lb..Ub],
may be determined by:

AutoScale(X, Lb, Ub, Scale, XMin, XMax, XStep)

where Scale defines the type of scale. The results are returned in XMin,

XMax, XStep.

44

Note that, for a logarithmic scale, the bounds must be powers of 10 and
the step is always 10.

Once the scales have been specified, the axes may be plotted with the
statements PlotOxAxis and PlotOyAxis.

In addition, a grid may be plotted with PlotGrid(Grid) where Grid

may be: HorizGrid (horizontal lines only), VertiGrid (vertical lines only)
or BothGrid (horizontal and vertical lines).

The current scale parameters can be retrieved for each axis with the
procedures:

• GetOxScale(Scale, OxMin, OxMax, OxStep)

• GetOyScale(Scale, OyMin, OyMax, OyStep)

7.2.3 Titles and fonts

The default titles are ‘X’ and ‘Y’ for the axes, and none for the main graph.
This may be changed with statements:

• SetOxTitle(Title)

• SetOyTitle(Title)

• SetGraphTitle(Title)

where Title is the relevant string.

The current titles are returned by the corresponding functions: GetOxTitle,
GetOyTitle, GetGraphTitle.

The fonts used to print the titles and axis labels are the BGI fonts (*.chr
files). The default font is the small font. It can be changed with the following
procedures:

SetTitleFont(FontIndex, Width, Height) for main graph
SetOxFont(FontIndex, Width, Height) for Ox axis
SetOyFont(FontIndex, Width, Height) for Oy axis
SetLgdFont(FontIndex, Width, Height) for curve legends

FontIndex is the index of the font, as specified by the Graph unit (e. g.
2 for the small font). Width and Height define the font size. In the case of
the axes, these settings will affect both the titles and labels.

Plotting the axes will automatically print the titles and labels. For the
main graph title, the statement WriteGraphTitle should be used.

45

7.2.4 Clipping

Procedure SetClipping(Clip), where Clip is a boolean parameter, is used
to decide if the subsequent graphics will be clipped to the boundaries of the
current viewport (defined by SetWindows).

7.2.5 Curves

Curve properties

Each curve is comprised of:

• a set of points, defined by their coordinates (xi, yi)

• a line connecting the points

It is possible to plot the points only, the line only, or both.

The points have the following properties:

• Symbol : index of the symbol to be plotted, according to the following
convention:

0 : point (1 pixel)

1 : solid circle

2 : open circle

3 : solid square

4 : open square

5 : solid triangle

6 : open triangle

7 : plus (+)

8 : multiply (×)

9 : star (∗)

• Size : size in pixels (will have no effect if Symbol = 0)

• Color : index of color, according to the current palette

The lines have the following properties:

• Style : line style, according to the Graph unit

46

0 : none

1 : solid

2 : dotted

3 : centered

4 : dashed

• Width : line width, according to the Graph unit

1 : normal

3 : thick

• Color : index of color

The curves have two additional properties :

• a legend (30 characters max.)

• a step, which defines how many points will be plotted (plot 1 point
every step points)

By default, 9 curves may be plotted, with the following default parame-
ters:

• symbol = index of curve

• point size = 2

• line style = 1 (solid)

• line width = 1 (normal)

• legend = ‘Y1’, ‘Y2’, ...

• step = 1

• color set for a 16-color palette (VGA mode)

47

Curve index Color index Color
1 12 LightRed
2 14 Yellow
3 10 LightGreen
4 9 LightBlue
5 11 LightCyan
6 13 LightMagenta
7 4 Red
8 2 Green
9 1 Blue

The maximal number of curves may be changed with SetMaxCurv(NCurv)

where NCurv is a number between 1 and 255. The current number of curves
is returned by function GetMaxCurv.

The settings for the curve CurvIndex may be changed with the following
procedures:

• SetPointParam(CurvIndex, Symbol, Size, Color)

• SetLineParam(CurvIndex, Style, Width, Color)

• SetCurvLegend(CurvIndex, Legend)

• SetCurvStep(CurvIndex, Step)

The current settings are retrieved by the two procedures:

• GetPointParam(CurvIndex, Symbol, Size, Color)

• GetLineParam(CurvIndex, Style, Width, Color)

and the two functions:

• GetCurvLegend(CurvIndex)

• GetCurvStep(CurvIndex)

48

Plotting curves

• Procedure PlotCurve(X, Y, Lb, Ub, CurvIndex) plots a curve de-
fined by the point coordinates X[Lb..Ub], Y[Lb..Ub], according to
the parameters of curve #CurvIndex. The coordinates are expressed
in user units (not in pixels).

• PlotCurveWithErrorBars(X, Y, S, Ns, Lb, Ub, CurvIndex) plots
the curve and adds a vertical error bar to each point. The individual
errors (usually expressed as standard deviations) are stored in vector
S[Lb..Ub]. Ns is an integer such that the total height of the bar is 2

* Ns * S[I] (e. g. set Ns to 3 for plotting 6 standard deviations).

• Procedure PlotPoint(Xp, Yp, CurvIndex) plots a single point. Here
the coordinates Xp, Yp must be in pixels. This procedure is mainly
used internally by the two previous ones.

7.2.6 Plotting a function

Procedure PlotFunc(Func, X1, X2, CurvIndex) plots the graph of func-
tion Func from X1 to X2 according to the parameters of curve #CurvIndex.

Func is of type TFunc and is declared as:

function Func(X : Float) : Float;

7.2.7 Legends

• Procedure WriteLegend(NCurv, ShowPoints, ShowLines) draws a box
at the right side of the screen, with the legends of the plotted curves.
NCurv is the number of curves. ShowPoints and ShowLines are boolean
parameters selecting which symbols are displayed to identify the curves.

• Procedure WriteLegendSelect(NSelect, Select, ShowPoints, ShowLines)

writes the legends of the selected curves. NSelect is the number of se-
lected curves. Their indices are stored in the integer vector Select.
For instance, if you wish to plot the legends of curves #2, 5 and 10, set
NSelect = 3, Select[1] = 2, Select[2] = 5, Select[3] = 10.

7.2.8 Contour plots

Procedure ConRec(Nx, Ny, Nc, X, Y, Z, F) generates a contour plot of
a two-dimensional function f(x, y). The algorithm is adapted from Paul
Bourke (http://paulbourke.net/papers/conrec/)

49

Nx and Ny are the number of steps on Ox and Oy. Nc is the number of con-
tour levels. The point coordinates (in pixels) are stored in vectors X[0..Nx]
and Y[0..Ny]. The contour levels (in increasing order) are stored in vec-
tor Z[0..(Nc - 1)]. The function values are stored in matrix F[0..Nx,

0..Ny], such that F[I,J] is the function value at point (X[I], Y[J]).

7.2.9 Coordinate conversion

Functions Xpixel(X) and Ypixel(Y) convert the user coordinates X and Y

to the corresponding screen coordinates (pixels). Functions Xuser(X) and
Yuser(Y) do the inverse.

7.2.10 Leaving graphics

Procedure LeaveGraphics quits the graphic mode and returns to the text
mode.

7.3 Delphi graphics

In this section we will present the Delphi graphics with respect to their BGI
counterparts. The main difference is the presence, in some functions, of an
additional parameter Canvas which denotes the component on which the
graphic is drawn. When present, this parameter is always the first one.

7.3.1 Initializing graphics

• Function InitGraphics(Width, Height) enters graphic mode. The
parameters Width and Height refer to the canvas on which the graphic
is plotted.

Examples:

– To draw on a TImage object:

InitGraph(Image1.Width, Image1.Height)

– To print the graphic:

InitGraph(Printer.PageWidth, Printer.PageHeight)

The function returns True if the initialization is successful.

50

• Procedure SetWindow behaves as its BGI equivalent, except for the
additional parameter Canvas.

Example : SetWindow(Image1.Canvas, 15, 85, 15, 85, True)

7.3.2 Coordinate axes

• Procedures AutoScale, SetOxScale, SetOyScale, GetOxScale, GetOyScale

are identical to their BGI counterparts.

• Procedures PlotOxAxis, PlotOyAxis, PlotGrid have the additional
parameter Canvas.

7.3.3 Titles and fonts

• The fonts are specified by the property of the canvas. Hence, there is
no need for specific functions in DMath to change them.

• Procedures SetGraphTitle, SetOxTitle, SetOyTitle and their cor-
responding functions GetGraphTitle, GetOxTitle, GetOyTitle are
identical to their BGI counterparts.

• Procedure WriteGraphTitle has the additional parameter Canvas.

7.3.4 Curves

• The curves have the same properties than in the BGI version, except
that Style is of type TPenStyle and Color is of type TColor.

The default colors are as follows:

Curve index Color
1 clRed
2 clGreen
3 clBlue
4 clFuchsia
5 clAqua
6 clLime
7 clNavy
8 clOlive
9 clPurple

51

• Procedures SetMaxCurv, SetCurvLegend, SetCurvStep and their cor-
responding functions GetMaxCurv, GetCurvLegend, GetCurvStep are
identical to their BGI counterparts.

• Procedures SetPointParam, SetLineParam, GetPointParam, GetLineParam

are identical to their BGI counterparts, except for the types of param-
eters Style and Color.

• Procedures PlotCurve and PlotCurveWithErrorBars have the addi-
tional parameter Canvas.

• Procedure PlotPoint has the additional parameter Canvas. Moreover,
the point coordinates must be specified in user units instead of pixels.

7.3.5 Other functions

• Procedure PlotFunc(Canvas, Func, Xmin, Xmax, Npt, CurvIndex)

has a specific parameter Npt which denotes the number of points to be
plotted.

• Procedures WriteLegend, WriteLegendSelect and ConRec have the
additional parameter Canvas.

• Functions Xpixel, Ypixel, Xuser, Yuser are identical to their BGI
counterparts.

7.4 LaTeX graphics

Most graphic statements have a LaTeX counterpart with a name beginning
with ‘TeX’, e.g. TeX InitGraphics.

However, colors and fonts are not handled at this time. So, the resulting
plot will be black and white and all labels will be printed with the default
font.

7.4.1 Initializing graphics

• Function TeX InitGraphics(FileName, PgWidth, PgHeight, Header)

initializes the LaTeX file.

– FileName is the name of the LaTeX file (e. g. ’figure.tex’)

– PgWidth, PgHeight are the dimensions of the graphic area in cm

52

– Header is a boolean parameter which allows to create a new file
and write the following preamble:

\documentclass[12pt,a4paper]{article}

\usepackage{pst-plot}

\pagestyle{empty}

\begin{document}

If Header is False, no preamble will be written.

Symmetrically, the statement TeX LeaveGraphics has a boolean pa-
rameter Footer which allows to print the \end{document} section and
close the file.

So, you can place several plots in a single document by calling the two
procedures with the relevant boolean parameters. For instance, the
following sequence will place two plots on the same page:

{ Create new file and write preamble }

if TeX_InitGraphics(’figure.tex’, 15, 10, True) then

begin

TeX_SetWindow(10, 90, 10, 90, True);

....................................

(* Close file but don’t write the ’\end{document}’ section *)

TeX_LeaveGraphics(False);

end;

{ Append to existing file and don’t write preamble }

if TeX_InitGraphics(’figure.tex’, 15, 10, False) then

begin

TeX_SetWindow(10, 90, 10, 90, True);

....................................

(* Close file and write the ’\end{document}’ section *)

TeX_LeaveGraphics(True);

end;

• Procedure TeX SetWindow behaves as its BGI equivalent.

53

7.4.2 Axes and titles

The following procedures behave as their BGI equivalents:

• TeX SetOxScale

• TeX SetOyScale

• TeX SetGraphTitle

• TeX SetOxTitle

• TeX SetOyTitle

• TeX PlotOxAxis

• TeX PlotOyAxis

• TeX PlotGrid

• TeX WriteGraphTitle

7.4.3 Curves

• The curves have the same properties than in the BGI version, except
that:

– there is no Color parameter;

– there is an additional boolean property Smooth which indicates if
the curve must be smoothed.

These properties are set with the following procedures:

– TeX SetPointParam(CurvIndex, Symbol, Size)

– TeX SetLineParam(CurvIndex, Style, Width, Smooth)

• The following procedures behave as their BGI equivalents:

– TeX SetMaxCurv, TeX SetCurvLegend, TeX SetCurvStep

– TeX PlotCurve, TeX PlotCurveWithErrorBars

– TeX WriteLegend, TeX WriteLegendSelect

– TeX ConRec

• Procedure TeX PlotFunc(Func, X1, X2, Npt, CurvIndex) has an ad-
ditional parameter Npt which denotes the number of points to be plot-
ted.

54

7.4.4 Other functions

Functions Xcm(X) and Ycm(Y) convert the user coordinates X and Y to their
equivalent in cm.

7.5 RGB / HSV conversion

The following procedures allow to convert a color between the RGB (Red,
Green, Blue) and HSV (Hue, Saturation, Value) color spaces:

• RGBtoHSV(R, G, B, H, S, V)

• HSVtoRGB(H, S, V, R, G, B)

where:

• R, G, B are in [0, 255] (Byte type)

• H is in [0, 360] (Float type)

• S and S are in [0, 1] (Float type)

7.6 Demo programs

7.6.1 BGI programs

These programs are located in the demo\bgi\fmath subdirectory.

• Program plot.pas plots a function in linear or logarithmic coordinates.
The square root function is taken as example, since its graph becomes
a straight line in log-log coordinates.

• Program contour.pas draws a contour plot of a function of two vari-
ables, using the ConRec algorithm developed by Paul Bourke.

The example function is:

f(x, y) = sin
√
x2 + y2 +

1

2
√

(x+ c)2 + y2

where c is a constant which may be varied to modifiy the aspect of the
graph.

55

7.6.2 GUI programs

These programs are located in the demo\gui subdirectory.

• Program fplot.dpr (in demo\gui\fplot) allows to plot up to 9 func-
tions defined by the user. These functions are interpreted at run-time
by the expression parser described in the previous chapter. The func-
tions must therefore be written according to the syntax of the parser.

Clicking the button ”Graph Options” will bring in a special dialog for
setting all the options for the whole graphic, axes, curves, titles etc.
These options can be saved in a configuration file having the *.GCF
extension.

The image can be saved in a BMP file by clicking the ”Save” button.

• Program hsv rgb.dpr (in demo\gui\hsv_rgb) performs the conversion
between the RGB and HSV color spaces.

7.6.3 LaTeX program

Program texdemo.pas, placed in the demo\console\fmath directory, creates
a LaTeX file figure.tex which plots a Fourier series:

F1 = 0.75(1 + cosφ)

F2 = 2.5[1 + cos(2φ− π)]

F3 = F1 + F2

This function is used in chemistry to describe the torsional energy of an
amide bond.

The resulting file must be processed with latex. The graphics can be
converted to PostScript by the dvips utility:

latex figure

dvips figure

56

Chapter 8

String functions

Some string functions have been added to DMath, mainly to help printing
results.

8.1 Trim functions

• function LTrim(S) removes the leading blanks in string S

• function RTrim(S) removes the trailing blanks in string S

• function Trim(S) removes the leading and trailing blanks in string S

8.2 Fill functions

• function RFill(S, L) returns string S completed with trailing blanks
for a total length L

• function LFill(S, L) returns string S completed with leading blanks
for a total length L

• function CFill(S, L) returns string S completed with leading blanks
so as to center the string on a total length L

• function StrChar(N, C) returns a string made of character C repeated
N times

57

8.3 Character replacement

Subroutine Replace(S, C1, C2) replaces in string S all the occurences of
character C1 by character C2

8.4 Parsing

• function Extract(S, Index, Delim) extracts a field from string S.
Index is the position of the first character of the field. Delim is the
character used to separate fields (e.g. blank, comma or tabulation).
Blanks immediately following Delim are ignored. Index is updated to
the position of the next field.

• procedure Parse(S, Delim, Field, N) parses string S into its con-
stitutive fields. Delim is the field separator. The number of fields is
returned in N. The fields are returned in Field[0]..Field[N - 1].
Field must be dimensioned in the calling program.

8.5 Formatting functions

These functions allow to convert numbers to strings.

• procedure SetFormat(NumLength, MaxDec, FloatPoint, NSZero) de-
fines the numeric format, according to the following parameters:

NumLength : Length of numeric field (default 10)
MaxDec : Max. number of decimal places (default 4)
FloatPoint : Select floating point notation (default False)
NSZero : Write non significant zero’s (default True)

• function FloatStr(X) converts the real number X to a string according
to the numeric format specified by SetFormat

• function IntStr(N) converts the integer N to a string.

• function CompStr(Z) converts the complex number Z to a string.

8.6 Delphi specific functions

These functions control the appearance of strings which represent floating
point numbers, according to the decimal separator (point or comma) defined
in the Windows settings.

58

• function StrDec(S) modifies string S so that it contains the correct
decimal separator (e. g. 1.2 will be converted to 1,2 if the comma is
selected as the decimal separator).

• function IsNumeric(S, X) replaces in string S the decimal separator
by a point and returns TRUE if the string represents a number, which
is returned in X.

• function ReadNumFromEdit(Edit) reads a floating point number from
an Edit control.

• procedure WriteNumToFile(F, X) writes the floating point number X

in the text file F, forcing the use of a decimal point.

59

60

Chapter 9

Matrices and linear equations

This chapter describes the procedures and functions available in DMath to
perform vector and matrix operations, and to solve systems of linear equa-
tions.

9.1 Using vectors and matrices

DMath defines the following dynamic array types:

Vector type Matrix type Base variable
TVector TMatrix Floating point number (type Float)

TIntVector TIntMatrix Integer
TCompVector TCompMatrix Complex number (type Complex)
TBoolVector TBoolMatrix Boolean
TStrVector TStrMatrix String

To use these arrays in your programs, you must:

1. Declare variables of the appropriate type, then allocate each array be-
fore using it:

var

V : TVector;

A : TMatrix;

begin

DimVector(V, N); { creates vector V[0..N] }

DimMatrix(A, N, M); { creates matrix A[0..N, 0..M] }

{ N, M are integer variables }

...

end.

61

Each vector or matrix type has a matching Dim... statement, e. g.
DimIntVector, DimCompMatrix ...

If the allocation does not succeed, the array is given the value nil. So,
it is possible to test the result:

DimVector(V, 10000);

if V = nil then

Write(’Not enough memory!’);

Note that this allocation step is mandatory. Unlike standard Pascal
arrays, it is not sufficient to declare the variables!

2. Use these arrays as in standard Pascal, noting that:

(a) All arrays begin at index 0, so that the 0-indexed element is always
present, even if you don’t use it.

(b) A matrix is declared as an array of vectors, so that A[I] denotes
the I-th row of matrix A and may be used as any vector.

(c) Vector and matrix parameters must be passed to functions or pro-
cedures with the var attribute when these parameters are dimen-
sioned inside the procedure. Otherwise, this attribute is not nec-
essary.

9.2 Maximal array sizes and initialization

The maximal array size is 231 − 1 = 2147483647 for Delphi and 215 − 1 =
32767 for FPC/Lazarus.

In principle, the compiler should initialize the numeric arrays to zero,
the boolean arrays to False and the string arrays to the null string. If this
is not the case, it is possible to force this initialization with the statement
SetAutoInit(True), and to revert it with SetAutoInit(False).

9.3 Programming conventions

The following conventions have been adopted:

• Parameters Lb and Ub denote the lower and upper bounds of the indices,
for a vector V[Lb..Ub] or a square matrix A[Lb..Ub, Lb..Ub].

62

• Parameters Lb1, Ub1 and Lb2, Ub2 denote the lower and upper bounds
of the indices, for a rectangular matrix A[Lb1..Ub1, Lb2..Ub2].

• With the exception of the memory allocation routines (DimVector,
DimMatrix ...), the procedures do not allocate the vectors or matrices
present in their parameter lists. These allocations must therefore be
performed by the main program, before calling the procedures.

9.4 Error codes

The following error codes are defined:

Error code Value Meaning
MatOk 0 No error

MatNonConv -1 Non-convergence of an iterative procedure
MatSing -2 Quasi-singular matrix

MatErrDim -3 Non-compatible dimensions
MatNotPD -4 Matrix not positive definite

9.5 Gauss-Jordan elimination

9.5.1 General case

If B(n×n) and C(n×m) are two real matrices, the Gauss-Jordan elimination
can compute the inverse matrix B−1, the solution X to the system of linear
equations BX = C, and the determinant of B.

This procedure is implemented in unit ugausjor as:

GaussJordan(A, Lb, Ub1, Ub2, Det)

where:

• On input, A[Lb..Ub1, Lb..Ub2] is the global matrix [B|C], which
means that:

– the first n columns of A contain the matrix B

– the other columns of A contain the matrix C

• On output, A is transformed into the global matrix [B−1|X], which
means that:

63

– the first n columns of A contain the inverse matrix B−1

– the other columns of A contain the solution matrix X

• Det is the determinant of B

Notes:

• C may be a vector, in this case m = 1 and X is also a vector.

• The original matrix A is overwritten by the procedure. If necessary,
the calling program must save a copy of it.

After a call to GaussJordan, the function MathErr will return the error
code:

• MatOk if no error

• MatErrDim if Ub1 > Ub2

• MatSing if B is quasi-singular

9.5.2 Special case

Procedure LinEq(A, B, Lb, Ub, Det), defined in unit ulineq, solves the
system AX = B, where A is a square matrix and B a vector, by the Gauss-
Jordan elimination method. In this case, the inverse matrix is returned in A

and the solution vector X is returned in B.

9.6 LU decomposition

The LU decomposition algorithm factors the square matrix A as a product
LU, where L is a lower triangular matrix (with unit diagonal terms) and U
is an upper triangular matrix.

The linear system AX = B is then solved by:

LY = B (9.1)

UX = Y (9.2)

System 9.1 is solved for vector Y, then system 9.2 is solved for vector X.
The solutions are simplified by the triangular nature of the matrices.

DMath provides the following procedures in unit ulu :

64

• procedure LU Decomp(A, Lb, Ub) performs the LU decomposition of
matrix A[Lb..Ub, Lb..Ub].

The matrices L and U are stored in A, which is therefore destroyed.

After a call to LU Decomp, the function MathErr will return one of the
following error codes:

– MatOk if no error

– MatSing if A is quasi-singular

• procedure LU Solve(A, B, Lb, Ub, X) solves the system AX = B,
where X and B are real vectors, once the matrix A has been trans-
formed by LU Decomp.

9.7 QR decomposition

This method factors a matrix A as a product of an orthogonal matrix Q by
an upper triangular matrix R:

A = QR

The linear system AX = B then becomes:

QRX = B

Denoting the transpose of Q by Q> and left-multiplying by this transpose,
one obtains:

Q>QRX = Q>B

or:
RX = Q>B

since the transpose of an orthogonal matrix is equal to its inverse.

The last system is solved by making advantage of the triangular nature
of matrix R.

Note : The QR decomposition may be applied to a rectangular matrix
n × m (with n > m). In this case, Q has dimensions n × m and R has
dimensions m×m. For a linear system AX = B, the solution minimizes the
norm of the vector AX - B. It is called the least squares solution.

DMath provides the following procedures in unit uqr :

65

• procedure QR Decomp(A, Lb, Ub1, Ub2, R) performs the QR decom-
position on the input matrix A[Lb..Ub1, Lb..Ub2].

The matrix Q is stored in A, which is therefore destroyed.

After a call to QR Decomp, the function MathErr will return one of the
following error codes:

– MatOk if no error

– MatErrDim if Ub2 > Ub1

– MatSing if A is quasi-singular

• procedure QR Solve(Q, R, B, Lb, Ub1, Ub2, X) solves the system
QRX = B.

9.8 Singular value decomposition

Singular value decomposition (SVD) factors a matrix A as a product:

A = USV>

where U et V are orthogonal matrices. S is a diagonal matrix. Its diagonal
terms Sii are all ≥ 0 and are called the singular values of A. The rank of A
is equal to the number of non-null singular values.

• If A is a regular matrix, all Sii are > 0. The inverse matrix is given
by:

A−1 = (USV>)−1 = (V>)−1S−1U−1 = V × diag(1/Sii)×U>

since the inverse of an orthogonal matrix is equal to its transpose.

So the solution of the system AX = B is given by X = A−1B

• If A is a singular matrix, some Sii are null. However, the previous
expressions remain valid provided that, for each null singular value,
the term 1/Sii is replaced by zero.

It may be shown that the solution so calculated corresponds:

– in the case of an under-determined system, to the vector X having
the least norm.

66

– in the case of an impossible system, to the least-squares solution.

Note : Just like the QR decomposition, the SVD may be applied to a
rectangular matrix n × m (with n > m). In this case, U has dimensions
n×m, S and V have dimensions m×m. For a linear system AX = B, the
SVD method gives the least squares solution.

DMath provides the following procedures in unit usvd :

• procedure SV Decomp(A, Lb, Ub1, Ub2, S, V) performs the singular
value decomposition on the input matrix A[Lb..Ub1, Lb..Ub2].

The matrix U (such that A = USV>) is stored in A, which is therefore
destroyed.

After a call to SV Decomp, the function MathErr will return one of the
following error codes:

– MatOk if no error

– MatErrDim if Ub2 > Ub1

– MatNonConv if the iterative process does not converge

• procedure SV SetZero(S, Lb, Ub, Tol) sets to zero the singular val-
ues Si which are lower than a fraction Tol of the highest singular value.
This procedure may be used when solving a system with a near-singular
matrix.

• procedure SV Solve(U, S, V, B, Lb, Ub1, Ub2, X) solves the sys-
tem USV>X = B.

• procedure SV Approx(U, S, V, Lb, Ub1, Ub2, A) approximates a ma-
trix A by the product USV>, after the lowest singular values have been
set to zero by SV SetZero.

9.9 Cholesky decomposition

The symmetric matrix A is said to be positive definite if, for any nonzero
vector x, the product x>Ax is > 0.

For such matrices, it is possible to find a lower triangular matrix L such
that:

A = LL>

L can be viewed as a kind of ‘square root’ of A.

67

Subroutine Cholesky(A, L, Lb, Ub), defined in unit ucholesk, per-
forms the Cholesky decomposition on A[Lb..Ub, Lb..Ub]. After a call to
the subroutine, function MathErr returns the error code:

• MatOk if there is no error.

• MatErrDim if the matrix dimensions do not match.

• MatNotPD if A is not positive definite.

9.10 Eigenvalues and eigenvectors

9.10.1 Definitions

A square matrix A is said to have an eigenvalue λ, associated to an eigen-
vector V, if and only if:

A ·V = λ ·V
A symmetric matrix of size n has n distinct real eigenvalues and n or-

thogonal eigenvectors.

A non-symmetric matrix of size n has also n eigenvalues but some of them
may be complex, and some may be equal (they are said to be degenerate).

9.10.2 Symmetric matrices

• Procedure EigenSym(A, Lb, Ub, Lambda, V), defined in unit ueigsym,
computes the eigenvalues and eigenvectors of the real symmetric posi-
tive semi-definite matrix A[Lb..Ub, Lb..Ub] by singular value decom-
position.

The eigenvectors are returned in matrix V; the eigenvalues are returned
in vector Lambda.

The eigenvectors are stored along the columns of V. They are normal-
ized, with their first component always positive.

The error codes are those of the SV Decomp procedure.

• Procedure Jacobi(A, Lb, Ub, MaxIter, Tol, Lambda, V), defined
in unit ujacobi, computes the eigenvalues and eigenvectors of the real
symmetric matrix A[Lb..Ub, Lb..Ub], using the iterative method of
Jacobi. The eigenvalues and eigenvectors are ordered and normalized
as with the previous procedure.

68

MaxIter is the maximum number of iterations, Tol is the required
precision on the eigenvalues.

After a call to Jacobi, function MathErr returns one of two error codes:

– MatOk if all goes well.

– MatNonConv if the iterative process does not converge.

These procedures destroy the original matrix A.

9.10.3 General square matrices

• procedure EigenVals(A, Lb, Ub, Lambda), defined in unit ueigval,
computes the eigenvalues of the real square matrix A[Lb..Ub, Lb..Ub].

Eigenvalues are stored in the complex vector Lambda. The real and
imaginary parts of the ith eigenvalue are stored in Lambda[i].X and
Lambda[i].Y, respectively. The eigenvalues are unordered, except that
complex conjugate pairs appear consecutively with the value having
the positive imaginary part first.

Function MathErr returns the following error codes:

• 0 if no error

• (-i) if an error occurred during the determination of the ith eigen-
value. The eigenvalues should be correct for the indices > i.

This procedure destroys the original matrix A.

• procedure EigenVect(A, Lb, Ub, Lambda, V), defined in unit ueigvec,
computes the eigenvalues and eigenvectors of the real square matrix
A[Lb..Ub, Lb..Ub].

Eigenvalues are stored in the complex vector Lambda, just like with
EigenVals.

Eigenvectors are stored along the columns of the real matrix V.

If the ith eigenvalue is real, the ith column of V contains its eigenvector.
If the ith eigenvalue is complex with positive imaginary part, the ith

and (i+1)th columns of V contain the real and imaginary parts of its
eigenvector. The eigenvectors are unnormalized.

69

Function MathErr returns the same error codes than EigenVals. If the
error code is not null, none of the eigenvectors has been found.

This procedure destroys the original matrix A.

9.11 Demo programs

9.11.1 Console programs

These programs are located in the demo\console\matrices subdirectory.

Determinant and inverse of a square matrix

Program detinv.pas computes the determinant and inverse of a square ma-
trix. The inverse matrix is re-inverted and the result (which should be equal
to the original matrix) is printed. The determinant of the inverse matrix is
also evaluated and the product of the two determinants (which should be -1)
is displayed.

The example matrix is:

A =


1 2 0 −1
−1 4 3 −0.5

2 2 1 −3
0 0 3 −4


The inverse is:

A−1 =



−41
21

4
21

11
7
−5

7

16
21

1
21
− 5

14
1
14

−40
21

8
21

8
7
−3

7

−10
7

2
7

6
7
−4

7


or, in approximate form:

A−1 ≈


−1.9523 0.1905 1.5714 −0.7143

0.7619 0.0476 −0.3571 0.0714
−1.9048 0.3810 1.1429 −0.4286
−1.4286 0.2857 0.8571 −0.5714


The determinant is -21.

70

Hilbert matrices

Program hilbert.pas tests the Gauss-Jordan method by solving a series of
Hilbert systems of increasing order. Such systems have matrices of the form:

A =



1 1
2

1
3

1
4
· · · 1

N

1
2

1
3

1
4

1
5
· · · 1

N+1

1
3

1
4

1
5

1
6
· · · 1

N+2

1
4

1
5

1
6

1
7
· · · 1

N+3
...

...
1
N

1
N+1

1
N+2

1
N+3

· · · 1
2N−1


Each element of the constant vector (stored in the (N + 1)th column of

matrix A) is equal to the sum of the terms in the corresponding line of the
matrix :

Ai,N+1 =
N∑
j=1

Aij

The solution of such a system is [1, 1, 1, · · · 1]

The determinant of the Hilbert matrix tends towards zero when the order
increases. The program stops when the determinant becomes too low with
respect to the numerical precision of the floating point numbers. This occurs
at order 13 in double precision.

Gauss-Jordan method: single constant vector

Program lineq1.pas solves the linear system AX = B. After a call to
LinEq, A contains the inverse matrix and B contains the solution vector.

The example system matrix is:

A =


2 1 5 −8
7 6 2 2
−1 −3 −10 4

2 2 2 1


The constant vector is:

B =


0

17
−10

7


71

The solution vector is:

X =


1
1
1
1


The determinant is -135

Gauss-Jordan method: multiple constant vectors

Program lineqm.pas solves a series of linear systems with the same system
matrix and several constant vectors. The system matrix is stored in the
first n columns of matrix A; the constant vectors are stored in the following
columns. After a call to GaussJordan, the first n columns of A contain the
inverse matrix and the following columns contain the solution vectors.

The example system matrix from the previous program is used. The
matrix of constant vectors is:

0 −15 14 −13 5
17 50 1 84 30
−10 −5 −12 −51 −15

7 17 1 37 10


The solution matrix is: 

1 2 1 4 0
1 5 −1 5 5
1 0 1 6 0
1 3 −1 7 0



LU, QR and SV decompositions

The demo programs test lu.pas, test qr.pas and test svd.pas solve the
linear system used by lineq1.pas (paragraph 9.11.1) with the LU, QR, and
singular value decompositions, respectively.

Cholesky decomposition

Program cholesk.pas performs the Cholesky decomposition of a positive
definite symmetric matrix. The matrix is decomposed then the program
computes the product LL> which must give the original matrix.

72

The example matrix is:

A =

 60 30 20
30 20 15
20 15 12


Its Cholesky factor is:

L =

 2
√

15 0 0√
15
√

5 0
2
3

√
15
√

5 1
3

√
3


or, in approximate form:

L ≈

 7.745967 0 0
3.872983 2.236068 0
2.581989 2.236068 0.577350


Eigenvalues of a symmetric matrix

Program eigensym.pas computes the eigenvalues and eigenvectors of Hilbert
matrices (see program hilbert.pas) by the SVD or Jacobi methods. Such
matrices are very ill-conditioned, which can be seen from the high ratio be-
tween the highest and lowest eigenvalues (the condition number).

Eigenvalues of a general square matrix

Program eigenval.pas computes the eigenvalues of a general square matrix.

The example matrix from the detinv.pas program is used. It has two
real and two complex (conjugate) eigenvalues:

-1.075319 + 1.709050 * i

-1.075319 - 1.709050 * i

-1.000000

5.150639

Eigenvalues and eigenvectors of a general square matrix

Program eigenvec.pas computes both the eigenvalues and eigenvectors of
a general square matrix. The same example matrix is used.

The eigenvectors are stored columnwise in a matrix V. In order to retrieve
the eigenvectors associated with complex eigenvalues, the program takes into
account the following properties:

73

• Complex conjugate pairs of eigenvalues are stored consecutively in vec-
tor Lambda, with the value having the positive imaginary part first.

• If the ith eigenvalue is complex with positive imaginary part, the ith

and (i+1)th columns of matrix V contain the real and imaginary parts
of its eigenvector.

• Eigenvectors associated with complex conjugate eigenvalues are them-
selves complex conjugate.

Hence the algorithm:

if Lambda[I].Y = 0.0 then

{ Eigenvector is in column I of V }

else if Lambda[I].Y > 0.0 then

{ Real and imag. parts of eigenvector are in columns I and (I+1)

For component K: real part = V[K, I]

imag. part = V[K, I+1] }

else

{ Real and imag. parts of eigenvector are in columns (I-1) and I

For component K: real part = V[K, I-1],

imag. part = - V[K, I] }

The results obtained with the example matrix are the following:

Eigenvalue:

-1.075319 + 1.709050 * i

Eigenvector:

-0.220224 + 0.394848 * i

0.078289 - 0.303345 * i

0.029348 + 0.787594 * i

0.374358 + 0.589119 * i

Eigenvalue:

-1.075319 - 1.709050 * i

Eigenvector:

74

-0.220224 - 0.394848 * i

0.078289 + 0.303345 * i

0.029348 - 0.787594 * i

0.374358 - 0.589119 * i

Eigenvalue:

-1.000000

Eigenvector:

2.605054

-1.042021

3.126065

3.126065

Eigenvalue:

5.150638

Eigenvector:

0.345194

0.788801

0.441744

0.144823

9.11.2 GUI programs

Linear system solver

Program linsolve.dpr, located in demo\gui\linsolve, solves a system of
linear equations AX = B, where A is the system matrix and B is the
constant vector, by any of the four methods: Gauss-Jordan (default), LU,
QR or SVD. The product AX is then computed for comparison with the
constant vector B.

The following buttons are available:

• Load system : reads data from a text file (example: matrix3.dat in
demo\console\matrices)

• Save system : writes data in a text file

75

• Numeric format : sets the printing format for the results according
to the function SetFormat (see chapter 8).

• Solve system

• Save solution : stores the solution vector in a text file, using the
settings from ‘Numeric format’.

76

Chapter 10

Function minimization

This chapter describes the procedures and functions available in DMath to
minimize functions of one or several variables. Only deterministic optimiz-
ers are considered here. Stochastic optimization will be studied in another
chapter.

10.1 Functions of one variable

Let Func be a function of a real variable X. In DMath such a function is
declared as:

function Func(X : Float) : Float;

There is a special type TFunc for this kind of functions.

The problem is to find the real Xmin for which Func(X) is minimal.

Procedure GoldSearch(Func, A, B, MaxIter, Tol, Xmin, Ymin), de-
fined in unit ugoldsrc, performs the minimization by the ‘golden search’
method. This means that, at each iteration, the number Xmin is ‘bracketed’
by a triplet (A, B, C) such that:

• A < B < C

• A,B,C are within the golden mean φ, i.e.

B − A
C −B

=
C − A
B − A

= φ =
1 +
√

5

2
≈ 1.618

• Func(B) < Func(A) and Func(B) < Func(C).

77

The user must provide two numbers A and B which define the ‘unit vector’
on the X axis. The number C is found by the program itself. It is not
necessary that the interval [A, B] contains the minimum.

The user must also provide:

• the maximum number of iterations MaxIter

• the tolerance Tol with which the minimum must be located. This value
should not be higher than the square root of the machine precision
(MachEp1/2 ≈ 1.5× 10−8 in double precision)

The procedure returns the coordinates (Xmin, Ymin) of the minimum.

After a call to GoldSearch, function MathErr() will return one of two
error codes:

• OptOk if no error occurred

• OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

The determination of the bracketing triplet A, B, C is performed within
GoldSearch by a call to a procedure MinBrack, defined in unit uminbrak.
This procedure may be called independently. Its syntax is:

MinBrack(Func, A, B, C, Fa, Fb, Fc)

The user must provide the first two numbers A and B. The number C is found
by the procedure. The corresponding values of the function are returned in
Fa, Fb, Fc.

10.2 Functions of several variables

Let Func be a function of a real vector x such that x = [x1, x2, · · ·]. In DMath
such a function is declared as:

function Func(X : TVector) : Float;

There is a special type TFuncNVar for this kind of functions.

The problem is to find the vector X for which Func(X) is minimal.

78

10.2.1 Minimization along a line

If x0 is a starting point and δx is a constant vector, minimizing f from x0

along the direction specified by δx is equivalent to finding the number r such
that g(r) = f(x0 + r · δx) is minimal.

The following procedure, defined in unit ulinmin :

LinMin(Func, X, DeltaX, Lb, Ub, R, MaxIter, Tol, F_min)

will minimize function Func from point X[Lb..Ub] in the direction specified
by vector DeltaX[Lb..Ub]. R is the initial step in that direction, expressed
as a fraction of the norm of DeltaX. If R is set to 0 or a negative value,
the procedure will use the default value R = 1. The user must also provide
the maximum number of iterations MaxIter and the tolerance Tol, as for
procedure GoldSearch.

On output, LinMin returns:

• the coordinates of the minimum in X

• the step corresponding to the minimum in R

• the function value at the minimum in F min

After a call to LinMin, function MathErr() will return one of the error
codes OptOk or OptNonConv, as with GoldSearch.

10.2.2 Newton-Raphson method

The Newton-Raphson method starts with an approximation x0 for the coor-
dinates of the minimum and generates a new approximation x by using the
second-order Taylor series expansion of function f around x0:

f(x) = f(x0) + (x− x0)> · g(x0) +
1

2
(x− x0)> ·H(x0) · (x− x0) (10.1)

g denotes the gradient vector (vector of first partial derivatives) and H de-
notes the hessian matrix (matrix of second partial derivatives). For instance,
for a fonction of two variables f(x1, x2) :

g(x0) =


∂f
∂x1

(x0
1, x

0
2)

∂f
∂x2

(x0
1, x

0
2)

 H(x0) =


∂2f
∂x21

(x0
1, x

0
2) ∂2f

∂x1∂x2
(x0

1, x
0
2)

∂2f
∂x2∂x1

(x0
1, x

0
2) ∂2f

∂x22
(x0

1, x
0
2)


79

By differentiating eq. (1) we obtain the gradient of f at point x:

g(x) = g(x0) + H(x0) · (x− x0) (10.2)

If x is sufficiently close to the minimum, g(x) ≈ 0 so:

x = x0 −H−1(x0) · g(x0)

In practice, it is better to determine the step k which minimizes the
function in the direction specified by −H−1(x0) · g(x0):

x = x0 − k ·H−1(x0) · g(x0)

The determination of k is performed by line minimization.

The following procedure, defined in unit unewton :

Newton(Func, HessGrad, X, Lb, Ub, MaxIter, Tol, F_min, G, H_inv, Det)

minimizes function Func by the Newton-Raphson method.

The user must provide a procedure HessGrad to compute the gradient G
and the hessian H of the function at point X. This procedure is declared as:

procedure HessGrad(X, G : TVector; H : TMatrix);

which corresponds to type THessGrad.

MaxIter and Tol have their usual meaning.

On output, Newton returns:

• the coordinates of the minimum in X

• the function value at the minimum in F min

• the gradient at the minimum in G (should be near 0)

• the inverse hessian matrix at the minimum in H inv

• the determinant of the hessian matrix at the minimum in Det

After a call to Newton, function MathErr() will return one of three error
codes:

• OptOk if no error occurred

• OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

• OptSing if the hessian matrix is quasi-singular

80

Approximate gradient and hessian

Although it is recommended to compute the gradient and hessian from an-
alytical derivatives, approximate values may be found using finite difference
approximations:

∂f

∂xi
(x) ≈ f(xi + hi)− f(xi − hi)

2hi

∂2f

∂x2
i

(x) ≈ f(xi + hi) + f(xi − hi)− 2f(xi)

h2
i

∂2f

∂xi∂xj
(x) ≈ f(xi + hi, xj + hj)− f(xi + hi, xj)− f(xi, xj + hj) + f(xi, xj)

hihj

The increment hi is such that hi = η | xi | where η is a constant which
should not be less than the cube root of the machine epsilon (MachEp1/3 ≈
6.06× 10−6 in double precision).

This method is illustrated in the demo programs testnewt.pas and
testmarq.pas (see paragraph 10.3).

10.2.3 Marquardt method

This method is a variant of the Newton-Raphson method, in which each
diagonal term of the hessian matrix is multiplied by a scalar equal to (1+λ),
where λ is the Marquardt parameter. This parameter is initialized at some
small value (e.g. 10−2) at the beginning of the iterations, then it is decreased
by a factor 10 if the iteration leads to a decrease of the function, otherwise
it is increased by a factor 10. If the method converges, λ is set to zero and
an additional iteration (equivalent to a Newton-Raphson step) is performed.

This procedure is implemented in unit umarq as:

Marquardt(Func, HessGrad, X, Lb, Ub, MaxIter, Tol, F_min, G, H_inv, Det)

It is used like Newton, except that an additional error code, OptBigLambda,
may be returned by MathErr if the Marquard parameter increases beyond a
predefined value (103 in this implementation).

81

10.2.4 BFGS method

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) method is another variant
of the Newton method in which the hessian matrix does not need to be
computed explicitly. It is said a quasi-Newton method.

The BFGS algorithm uses the following formula to construct the inverse
hessian matrix iteratively:

H−1
i+1 = H−1

i +
δx · δx>

δx> · δg
− (H−1

i · δg) · (H−1
i · δg)>

δg> ·H−1
i · δg

+ (δg> ·H−1
i · δg) · u · u>

with:

δx = xi+1 − xi δg = g(xi+1)− g(xi) u =
δx

δx> · δg
− H−1

i · δg
δg> ·H−1

i · δg

The algorithm is usually started with the identity matrix (H−1
0 = I).

This procedure is implemented in unit ubfgs as:

BFGS(Func, Gradient, X, Lb, Ub, MaxIter, Tol, F_min, G, H_inv)

The user must provide a procedure Gradient to compute the gradient G of
the function at point X. This procedure is declared as:

procedure Gradient(X, G : TVector);

which corresponds to type TGradient.

The other parameters have the same meaning than in Newton.

Approximate gradient

It is possible to estimate the gradient of function Func by finite difference
approximations, as described for the Newton method. Here the relative in-
crement η should not be less than the square root of the machine epsilon
(about 1.5× 10−8 in double precision).

See demo program testbfgs.pas for an example.

As usual, it is recommended to use analytical derivatives whenever pos-
sible.

82

10.2.5 Simplex method

Unlike previous methods, the simplex method of Nelder and Mead does not
use derivatives to locate the minimum. Instead it constructs a geometrical
figure (the ‘simplex’) having (n+ 1) vertices, if n is the number of variables.
For instance, in the two-dimensional space (n = 2), the simplex would be
a triangle. Depending on the function values at the vertices, the simplex is
reduced or expanded until it comes close to the minimum.

This method is implemented in unit usimplex as:

Simplex(Func, X, Lb, Ub, MaxIter, Tol, F_min)

where the parameters have their usual meaning.

10.2.6 Log files

It is possible to create ‘log files’ which save the progress of the iterations. If
the algorithm terminates abnormally, checking these files may help finding
the error. For each method (Newton, Marquard, BFGS, Simplex) there is a
Save... procedure which creates the log file. Each procedure accepts the
name of the file as its parameter (e.g. SaveBFGS(’bfgs.txt’)). The file is
automatically closed when the optimization procedure ends.

See the demo programs for examples using such files.

10.3 Demo programs

These programs are located in the demo\console\optim subdirectory.

Function of one variable

Program minfunc.pas performs the golden search minimization on the func-
tion:

f(x) = e−2x − e−x

The minimum is at (ln 2,−1/4).

The minimum found by GoldSearch is compared with the true minimum.

83

Minimization along a line

Program minline.pas applies line minimization to the function of 3 variables
(taken from the Numerical Recipes example book):

f(x1, x2, x3) = (x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2

The minimum is f(1, 1, 1) = 0, i. e. for a step r = 1 from x = [0, 0, 0] in
the direction δx = [1, 1, 1].

The program tries a series of directions:

δx =
[√

2 cos
(
i
π

20

)
,
√

2 sin
(
i
π

20

)
, 1
]

i = 1..10

For each pass, the location of the minimum, and the value of the function
at the minimum, are printed. The true minimum is found at i = 5.

Newton-Raphson method

Program testnewt.pas uses the Newton-Raphson method to minimize Rosen-
brock’s function (H. Rosenbrock, Comput. J., 1960, 3, 175):

f(x, y) = 100(y − x2)2 + (1− x)2

for which the gradient and hessian are:

g(x, y) =

[
−400(y − x2)x− 2 + 2x

200y − 200x2

]
H(x, y) =

[
1200x2 − 400y + 2 −400x

−400x 200

]

and the determinant of the hessian is:

det H(x, y) = 80000(x2 − y) + 400

The minimum is f(1, 1) = 0, where:

g(1, 1) =

[
0
0

]

H−1(1, 1) =

[
1
2

1
1 401

200

]

det H(1, 1) = 400

In the demo program, the gradient and hessian are computed analyti-
cally. You can compare with the numerical computations by including file
numhess.inc in the program.

84

Other programs

Programs testmarq.pas, testbfgs.pas and testsimp.pas minimize Rosen-
brock’s function with the Marquardt, BFGS and Simplex methods, respec-
tively.

85

86

Chapter 11

Nonlinear equations

This chapter describes the procedures available in DMath to solve nonlinear
equations in one or several variables. Only general methods are considered
here. Polynomial equations will be studied in the next chapter.

11.1 Equations in one variable

The goal is to solve the nonlinear equation f(x) = 0, or, in other terms, find
a root of function f .

11.1.1 Bisection method

Procedure Bisect(Func, X, Y, MaxIter, Tol, F), defined in unit ubisect,
finds a root of function Func by the bisection method. At each iteration, the
root is bounded by two numbers (X, Y) such that the function has opposite
signs. Then, a new approximation to the root is generated by taking the
mean of these numbers.

The function Func must be declared as:

function Func(X : Float) : Float;

The user must provide initial values for X and Y. It is not necessary that
the interval [X, Y] contains the root.

The user must also provide:

• the maximum number of iterations MaxIter

• the tolerance Tol with which the root must be located.

87

The procedure returns the refined values of X and Y and the function
value Func(X) in F.

After a call to Bisect, function MathErr() will return one of two error
codes:

• OptOk if no error occurred

• OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

If the starting interval [X, Y] does not contain the root, Bisect will
expand it by calling a procedure RootBrack, also defined in ubisect. This
procedure may be called independently. Its syntax is:

RootBrack(Func, X, Y, FX, FY)

The user must provide initial values for the two numbers X and Y, which
will be refined by the procedure. The corresponding function values are
returned in FX and FY.

11.1.2 Secant method

The secant method also starts with two approximations x and y and generates
a new approximation z from the formula:

z =
xf(y)− yf(x)

f(y)− f(x)

z is the intersection of the Ox axis with the line connecting the points
(x, f(x)) and (y, f(y)), i. e. the secant.

This method is implemented in unit usecant as:

Secant(Func, X, Y, MaxIter, Tol, F)

The parameters and error codes are the same than in Bisect. Here too,
it is not necessary that the interval [X, Y] contains the root.

11.1.3 Newton-Raphson method

The Newton-Raphson method starts with an approximate root x0 and gener-
ates a new approximation x by using the first-order Taylor series expansion
of function f around x0:

f(x) ≈ f(x0) + f ′(x0) · (x− x0)

88

If x is sufficiently close to the root, f(x) ≈ 0 so:

x = x0 − f(x0)

f ′(x0)

This method is implemented in unit unewteq as:

NewtEq(Func, Deriv, X, MaxIter, Tol, F)

where Func and Deriv are the procedures which compute the function
and its derivative, respectively (they have the same syntax). The user must
provide the initial approximation X.

After a call to NewtEq, function MathErr() will return one of three error
codes:

• OptOk if no error occurred

• OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

• OptSing if the derivative becomes zero

11.2 Equations in several variables

The goal is to solve a system of n nonlinear equations in n unknowns x1, x2, · · ·xn:

f1(x1, x2, · · ·xn) = 0
f2(x1, x2, · · ·xn) = 0
· · · · · · · · · · · · · · · · · ·
fn(x1, x2, · · ·xn) = 0

or, in matrix notation:
f(x) = 0

where f is a function vector.

11.2.1 Newton-Raphson method

The Newton-Raphson method starts with an approximate root x0 and gener-
ates a new approximation x by using the first-order Taylor series expansion
of function f around x0:

f(x) ≈ f(x0) + D(x0) · (x− x0)

89

D denotes the jacobian matrix (matrix of first partial derivatives). For in-
stance, for a system of 2 equations in two variables:

f1(x1, x2) = 0

f2(x1, x2) = 0

the jacobian matrix is:

D(x0) =


∂f1
∂x1

(x0
1, x

0
2) ∂f1

∂x2
(x0

1, x
0
2)

∂f2
∂x1

(x0
1, x

0
2) ∂f2

∂x2
(x0

1, x
0
2)


If x is sufficiently close to the root, f(x) ≈ 0 so:

x = x0 −D−1(x0) · f(x0)

In practice, it is better to determine a step k in the direction specified by
D−1(x0) · f(x0):

x = x0 − k ·D−1(x0) · f(x0)

The determination of k is performed by line minimization applied to the
sum of squared functions:

S(x) =
n∑
i=1

fi(x)2

This method is implemented in unit unewteqs as:

NewtEqs(Equations, Jacobian, X, F, Lb, Ub, MaxIter, Tol)

where Equations and Jacobian are the procedures which compute the
function vector and the jacobian matrix, respectively. Their syntaxes are:

procedure Equations(X, F : TVector);

procedure Jacobian(X : TVector; D : TMatrix);

They correspond to types TEquations and TJacobian, respectively.

The user must provide the initial approximations to the roots in vector
X[Lb..Ub]. After refinement by the procedure, the corresponding function
values are returned in vector F.

The possible error codes returned by MathErr are:

• OptOk if no error occurred

• OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

• OptSing if the jacobian matrix is quasi-singular

90

Approximate jacobian

Approximate values of the jacobian matrix may be computed using finite
difference approximations:

∂fi
∂xj

(x) ≈ fi(xj + hj)− fi(xj − hj)
2hj

The increment hj is such that hj = η | xj | where η is a constant which
should not be less than the square root of the machine epsilon (MachEp1/2).

The demo program testnr.pas gives an example of using such a proce-
dure.

As usual, it is recommended to use analytical expressions for the deriva-
tives whenever possible.

11.2.2 Broyden’s method

This method is similar to the BFGS method of function minimization. It
can also be viewed as a multidimensional version of the secant method.

Broyden’s algorithm uses the following formula to construct the inverse
jacobian matrix iteratively:

D−1
i+1 = D−1

i +

[
(δx−D−1

i · δf) · δx>
]
·D−1

i

δx> ·D−1
i · δf

with:

δx = xi+1 − xi δf = f(xi+1)− f(xi)

The algorithm is usually started with the identity matrix (D−1
0 = I).

This method is implemented in unit ubroyden as:

Broyden(Equations, X, F, Lb, Ub, MaxIter, Tol)

where the parameters have the same significance than in NewtEqs.

The possible error codes returned by MathErr are OptOk and OptNonConv.

11.3 Demo programs

These programs are located in the demo\console\equation subdirectory.

91

Equations in one variable

The demo programs testbis.pas, testsec.pas and testnr1.pas demon-
strate the bisection, secant and Newton-Raphson methods, respectively, on
the equation:

f(x) = x lnx− 1 = 0

for which the derivative is:

f ′(x) = ln x+ 1

The true solution is x = 1.763222834...

Equations in several variables

The demo programs testnr.pas and testbrdn.pas demonstrate the Newton-
Raphson and Broyden methods, respectively, on the following system (taken
from the Numerical Recipes example book) :

f(x, y) = x2 + y2 − 2 = 0

g(x, y) = exp(x− 1) + y3 − 2 = 0

for which the jacobian is:

D(x, y) =

[
2x 2y

exp(x− 1) 3y2

]

The true solution is (x, y) = (1, 1).

92

Chapter 12

Polynomials

This chapter describes the procedures and functions related to polynomials
and rational fractions.

12.1 Polynomials

Function Poly(X, Coef, Deg), defined in unit upolynom, evaluates the poly-
nomial:

P (X) = Coef[0] + Coef[1] ·X + Coef[2] ·X2 + · · ·+ Coef[Deg] ·XDeg

12.2 Rational fractions

Function RFrac(X, Coef, Deg1, Deg2), also defined in upolynom, evalu-
ates the rational fraction:

F (X) =
Coef[0] + Coef[1] ·X + · · ·+ Coef[Deg1] ·XDeg1

1 + Coef[Deg1 + 1] + · · ·+ Coef[Deg1 + Deg2] · XDeg2

12.3 Roots of polynomials

Analytical methods can be used to compute the roots of polynomials up to
degree 4. For higher degrees, iterative methods must be used.

12.3.1 Analytical methods

• Function RootPol1(A, B, X), defined in unit urtpol1, solves the lin-
ear equation A + BX = 0. The function returns 1 if no error occurs

93

(B 6= 0), -1 if X is undetermined (A = B = 0), -2 if there is no solution
(A 6= 0, B = 0).

• Functions RootPoln(Coef, Z), with n = 2, 3, 4, solve the equation:

Coef[0] + Coef[1] ·X + Coef[2] ·X2 + · · ·+ Coef[N] ·XN = 0

These functions are defined in their respective units urtpoln.

The roots are stored in the complex vector Z. The real part of the ith

root is in Z[i].X, the imaginary part in Z[i].Y.

If no error occurs, the function returns the number of real roots, oth-
erwise it returns (-1) or (-2) just like RootPol1.

12.3.2 Iterative method

Function RootPol(Coef, Deg, Z), defined in unit urootpol, solves the poly-
nomial equation:

a0 + a1x+ a2x
2 + · · ·+ anx

n = 0

by the method of the companion matrix.

The companion matrix A is defined by:

A =



−an−1

an
−an−2

an
· · · − a1

an
− a0
an

1 0 · · · 0 0
0 1 · · · 0 0
...

...
0 0 · · · 1 0


It may be shown that the eigenvalues of this matrix are equal to the roots

of the polynomial (Eigenvalues are treated in § 9.10).

The coefficients of the polynomial are passed in vector Coef, such that
Coef[0] = a0, Coef[2] = a1 etc. The degree of the polynomial is passed in
Deg. The roots are returned in the complex vector Z as described before.

If no error occurred, the function returns the number of real roots.

If an error occurred during the search for the ith root, the function returns
(-i). The roots should be correct for indices (i+1)..Deg. The roots are
unordered.

94

12.4 Ancillary functions

Two procedures have been added in unit upolutil to facilitate the handling
of polynomials roots:

• Function SetRealRoots(Deg, Z, Tol) allows to set the imaginary
part of a root to zero if it is less than a fraction Tol of the real part.
The function returns the total number of real roots.

Due to roundoff errors, some real roots may be computed with a very
small imaginary part, e.g. 1 + 10−8i. The function SetRealRoots tries
to correct this problem.

• Procedure SortRoots(Deg, Z) sort the roots such that:

1. The N real roots are stored in elements 1..N of vector Z, in in-
creasing order.

2. The complex roots are stored in elements (N + 1)..Deg of vector
Z and are unordered.

12.5 Demo programs

12.5.1 Console programs

These programs are located in the demo\console\polynom subdirectory.

Evaluation of a polynomial

Program evalpoly.pas evaluates a polynomial for a series of user-specified
values. Entering 0 stops the program.

Evaluation of a rational fraction

Program evalfrac.pas performs the same task as the previous program,
but with a rational fraction.

Roots of a polynomial

Program polyroot.pas computes the roots of a polynomial with real coef-
ficients. Analytical methods are used up to degree 4, otherwise the method
of the companion matrix is used.

95

The example polynomial is:

x6 − 21x5 + 175x4 − 735x3 + 1624x2 − 1764x+ 720

for which the roots are 1, 2 ... 6

12.5.2 GUI program

Program polysolve.dpr, located in demo\gui\polysolve, solves a polyno-
mial with real coefficients, up to degree 20. The roots are ordered according
to the SortRoots procedure. The complex part can be neglected if it is lower
than a specified fraction of the real part, as explained for the SetRealRoots

function. Once the roots have been computed, the real and imaginary parts
of the polynomial are displayed for each root.

The following buttons are available:

• Load and Save : reads or writes the coefficients from/to a text file
(example: coef.dat)

• Numeric format : sets the printing format for the results according
to the function SetFormat (see chapter 8).

• Solve polynomial

• Save roots : stores the roots in a text file, using the settings from
‘Numeric format’. Each root is stored in a single line (real part followed
by imaginary part). The polynomial values are not stored.

96

Chapter 13

Numerical integration and
differential equations

This chapter describes the procedures available in DMath to integrate a
function of one variable, and to solve systems of differential equations.

13.1 Integration

13.1.1 Trapezoidal rule

The trapezoidal rule approximates the integral I of a tabulated function by
the formula:

I ≈ 1

2

N−1∑
i=0

(xi+1 − xi)(yi+1 + yi)

where (xi, yi) are the coordinates of the ith point.

This procedure is implemented in unit utrapint as function TrapInt(X,

Y, N). Note that the lower bound of the arrays must be 0.

13.1.2 Gauss-Legendre integration

This method approximates the integral of a function f in an interval [a, b]
by: ∫ b

a
f(x)dx ≈ b− a

2

N∑
i=1

wif(yi)

yi =
b− a

2
xi +

b+ a

2

97

The abscissae xi and weights wi are predefined values for a given number
of points N .

This method is implemented in unit ugausleg as function GausLeg(Func,

A, B) for N = 16. Function Func must be declared as:

function Func(X : Float) : Float;

For the special case A = 0 there is a variant GausLeg0(Func, B).

13.2 Convolution

The convolution product of two functions f and g is defined by:

(f ∗ g)(t) =
∫ t

0
f(u)g(t− u)du

This product is often used to describe the ouput of a linear system when
f(t) is the input signal (function of time) and g(t) is the impulse response of
the system.

• Function Convol(Func1, Func2, T), defined in unit ugausleg, ap-
proximates the convolution product of the two functions Func1 and
Func2 at time T by the Gauss-Legendre method. The functions must
be declared as above.

• Procedure ConvTrap(Func1, Func2, T, Y, N), defined in unit utrapint,
approximates the convolution product of the two functions Func1 and
Func2 over a range of equally spaced times T[0..N] by the trapezoidal
rule. The results are returned in Y[0..N].

13.3 Differential equations

The Runge-Kutta-Fehlberg (RKF) method allows to compute numerical so-
lutions to systems of first-order differential equations of the form:

y′1(t) = f1[t, y1(t), y2(t), · · ·]

y′2(t) = f2[t, y1(t), y2(t), · · ·]

· ·

where the fi are known functions and the yi are to be determined.

98

The RKF procedure is an extension of the classical Runge-Kutta method.
For instance, in the case of a single differential equation

y′(t) = f [t, y(t)]

this method generates a sequence {tn, yn} which approximates the function
y(t).

The order of the method corresponds to the number of points used in
the interval [tn, tn+1]. For instance, the sequence generated by the 4-th order
Runge-Kutta method is defined by:

yn+1 = yn +
k1

6
+
k2

3
+
k3

3
+
k4

6

with:
k1 = h · f(tn, yn)

k2 = h · f
(
tn +

h

2
, yn +

k1

2

)

k3 = h · f
(
tn +

h

2
, yn +

k2

2

)
k4 = h · f(tn + h, yn + k3)

with h = tn+1 − tn
In the RKF method, the step size h is automatically varied so as to

maintain a given level of precision on the estimated y values.

The procedure RKF45, defined in unit urkf, is a translation of a Fortran
program by H. A. Watts and L. F. Shampine (http://www.csit.fsu.edu/

~burkardt/f_src/rkf45/rkf45.f90). It is intermediate between the 4-th
and 5-th order Runge-Kutta methods, hence the name RKF45.

In order to use this procedure you must:

1. Define the following variables (the names are optional):

var

Neqn : Integer; { Number of equations }

Y, Yp : TVector; { Functions and derivatives }

Tstart, Tstop : Float; { Integration interval }

Nstep : Integer; { Number of steps }

StepSize : Float; { Step size }

AbsErr, RelErr : Float; { Abs. and relative errors }

99

Flag : Integer; { Error flag }

T, Tout : Float; { Integration times }

I : Integer; { Loop variable }

2. Define a procedure for computing the system of differential equations:

procedure DiffEq(T : Float; Y, Yp : TVector);

begin

Yp[1] := Y[2];

Yp[2] := - Y[1];

end;

(There is a special type TDiffEqs for such procedures)

3. Initialize variables, compute the step size and call RKF45 for each
integration step (the initial values are given as examples, except for
Flag which must be initialized to 1):

begin

Neqn := 2;

DimVector(Y, Neqn);

DimVector(Yp, Neqn);

Y[1] := 1; { Initial conditions }

Y[2] := 0;

Tstart := 0;

Tstop := 2 * Pi;

Nstep := 12;

StepSize := (Tstop - Tstart) / Nstep;

AbsErr := 1.0E-6;

RelErr := 1.0E-6;

Flag := 1;

T := Tstart;

100

for I := 1 to Nstep do

begin

Tout := T + StepSize;

RKF45(DiffEq, Neqn, Y, Yp, T, Tout, RelErr, AbsErr, Flag);

T := Tout;

end;

end.

Upon return from RKF45:

• Y, Yp contain the values of the functions and their first derivatives at
Tout

• Flag contains an error code:

* 2 : no error

* 3 : too small RelErr value

* 4 : too much function evaluations needed

* 5 : too small AbsErr value

* 6 : the requested accuracy could not be achieved

* 7 : the method was unable to solve the problem

* 8 : invalid input parameters

If an error occurs, it should be possible in most cases to restart the com-
putation, using the values returned by the subroutine in RelErr and AbsErr.

Note : RKF45 may be used to compute a definite integral:

∫ b

a
f(t)dt = F (b)− F (a)

since this is equivalent to integrate the differential equation:

F ′(t) = f(t)

between a and b, with the initial condition specified by f(a).

101

13.4 Demo programs

These programs are located in the demo\console\integral subdirectory.

• Program trap.pas applies the trapezoidal rule to a tabulated function.

The example function f(x) = e−x is tabulated for x = 0 to 1 by steps
of 0.1. The integral is:∫ 1

0
e−xdx = 1− e−1 ≈ 0.6321

• Program gauss.pas demonstrates the Gauss-Legendre integration method.

The example function is f(x) = xe−x. The integral is:∫ x

0
f(t)dt = 1− (x+ 1)e−x

• Program conv.pas computes the convolution of two functions by the
Gauss-Legendre method.

The example functions are f(x) = xe−x and g(x) = e−2x. The convo-
lution product is:

(f ∗ g)(x) =
∫ x

0
f(u)g(x− u)du = e−2x

∫ x

0
ueudu = (x− 1)e−x − e−2x

• Program convtrap.pas computes the same convolution product by the
trapezoidal rule.

• Program test rkf.pas solves 3 systems of differential equations by the
RKF method:

1. A single nonlinear equation:

y′(t) = 0.25 · y(t) · [1− 0.05 · y(t)]

with the initial condition y(0) = 1.

The analytic solution is:

y(t) =
20

1 + 19 exp(−0.25t)

102

2. A system of two linear equations:

y′1(t) = y2(t)

y′2(t) = −y1(t)

with the initial conditions y1(0) = 1, y2(0) = 0.

The analytic solution is:

y1(t) = cos t y2(t) = − sin t

3. A system of 5 equations with one nonlinear:

y′1(t) = y2(t)

y′2(t) = y3(t)

y′3(t) = y4(t)

y′4(t) = y5(t)

y′5(t) = 45 · y3(t) · y4(t) · y5(t)− 40[y4(t)]3

9[y3(t)]2

with initial conditions yi(0) = 1 ∀i

The program prints the numeric solution, and, if possible, the analytic
one.

103

104

Chapter 14

Fourier transform

This chapter describes the procedures available in DMath to perform Fourier
transforms. These procedures are defined in unit ufft, which is based on
a previous work by Don Cross (http://groovit.disjunkt.com/analog/
time-domain/fft.html).

14.1 Introduction

Fourier transform is a mathematical method which allows to determine the
frequency spectrum of a given signal (for instance a sound). The mathemat-
ical definition is the following :

y(f) =
∫ ∞
−∞

x(t) exp(2πift)dt =
∫ ∞
−∞

x(t)(cos 2πft+ i sin 2πft) (14.1)

where x(t) is the input signal (function of time), f the frequency, and i
the complex number such that i2 = −1. y is the Fourier transform of x.

The input signal may have real or complex values. However, the Fourier
transform is always a complex number. For each frequency f , the modulus
of y(f) represents the energy associated with this frequency. A plot of this
modulus as a function of f gives the frequency spectrum of the input signal.

If the input signal is sampled as a sequence of n values x0, x1, ..., xn−1,
taken at constant time intervals, the Fourier transform is a sequence of com-
plex number y0, y1, ..., yn−1, such that:

yp =
n−1∑
k=0

xk

[
cos

(
2π
kp

n

)
+ i sin

(
2π
kp

n

)]
(14.2)

105

This formula allows, in principle, to compute the transform yp at any
point. In practice, a faster algorithm called the Fast Fourier Transform
(FFT) is used.

14.2 Programming

14.2.1 Array dimensioning

The FFT algorithm requires that the number of points n is a power of 2.
Moreover, the arrays must be dimensioned from 0 to (n− 1). For instance:

const

NumSamples = 512; { Buffer size must be power of 2 }

MaxIndex = NumSamples - 1; { Max. array index }

var

InArray, OutArray : TCompVector;

begin

DimVector(InArray, MaxIndex); { FFT input }

DimVector(OutArray, MaxIndex); { FFT output }

...

The maximal value of n depends on the maximal array size allowed by
the compiler (see § 9.2). For Delphi (32 bits, double precision), this value is
226 = 67108864 (64 mega) points.

14.2.2 FFT procedures

• Procedure FFT(NumSamples, InArray, OutArray) calculates the Fast
Fourier Transform of the array of complex numbers InArray to produce
the output complex numbers in OutArray.

• Procedure IFFT(NumSamples, InArray, OutArray) calculates the In-
verse Fast Fourier Transform of the array of complex numbers repre-
sented by InArray to produce the output complex numbers in OutArray.

In other words, this procedure reconstitutes the input signal from its
FFT.

• Procedure FFT Integer(NumSamples, RealIn, ImagIn, OutArray)

computes the Fast Fourier Transform on integer data. Here the real and

106

imaginary parts of the data are stored in two integer arrays RealIn and
ImagIn, while the results are stored in the complex array OutArray.

• Procedure FFT Integer Cleanup clears the memory after a call to
FFT Integer.

• Function CalcFrequency(NumSamples, FrequencyIndex, InArray) cal-
culates the complex frequency sample at a given index directly, by
means of eq. 14.2. Use this instead of FFT when you only need one
or two frequency samples, not the whole spectrum. It is also useful
for calculating the Fourier Transform of a number of data which is not
an integer power of 2. For example, you could calculate the transform
of 100 points instead of rounding up to 128 and padding the extra 28
array slots with zeroes.

14.3 Demo programs

14.3.1 Console program

Program freq.pas, located in demo\console\fourier, compares the FFT
with the direct computation of the frequencies, on a set of random data.
Results are stored in the output file freq.txt

14.3.2 BGI programs

These programs are located in demo\bgi\fourier

• Program testfft.pas generates a time signal consisting of a large 200
Hz sine wave added to a small 2000 Hz cosine wave. Next, it performs
the FFT and graphs the resulting complex frequency samples. Results
are stored in the output file testfft.txt

The sampling frequency SamplingRate is 22050 Hz, the number of
points NumSamples is 512 (= 29). These two numbers determine the
time and frequency units:

DT := 1 / SamplingRate; { Time unit }

DF := SamplingRate / NumSamples; { Frequency unit }

so that the entry InArray[I] in the input array of procedure FFT corre-
sponds to the signal value at time I * DT, and the entry OutArray[I]

107

in the output array corresponds to the Fourier transform at frequency
I * DF.

The highest frequency which may be detected is equal to SamplingRate/2
and is called Nyquist’s frequency. Hence, only the first half of array
OutArray needs to be plotted (the second half contains symmetric val-
ues).

The program generates the input signal, plots it, then performs the
FFT and plots the real and imaginary parts as a function of frequency.
The plot shows two peaks, corresponding to the 5-th and 46-th entries
in OutArray (as seen from the file fftout.txt). The corresponding
frequencies are:

5× 22050

512
≈ 215 Hz

46× 22050

512
≈ 1981 Hz

The high peak corresponds to the main signal and the small peak to
the parasite.

• Program filter.pas uses the same signal as the previous program and
filters the parasite by setting to zero all the FFT values corresponding
to the frequencies higher than 1000 Hz, according to the following code:

FreqIndex := Trunc(1000.0 / DF);

SymIndex := NumSamples - FreqIndex;

for I := FreqIndex to SymIndex do

begin

OutArray[I].X := 0.0;

OutArray[I].Y := 0.0;

end;

Note that the two halves of the output array, on either side of Nyquist’s
frequency, must be treated.

The program then calls procedure IFFT to compute the inverse Fourier
transform of the modified data and plots the result, showing that the
parasite has been removed, at the expense of a slight distorsion of the
main signal.

108

Chapter 15

Random numbers

This chapter describes the procedures and functions available to generate
random numbers and perform stochastic simulation and optimization.

15.1 Random numbers

15.1.1 Introduction

DMath provides three random number generators (RNG) :

• the ‘Multiply With Carry’ (MWC) generator of George Marsaglia.

• the ‘Mersenne Twister’ (MT) generator of Takuji Nishimura and Makoto
Matsumoto (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
emt.html).

• the ‘Universal Virtual Array Generator’ (UVAG) contributed by Alex
Hay.

The first method produces a sequence {In} of integer numbers by means
of the following recurrence relationships:

In+1 = (aIn + cn) mod b

cn+1 = (aIn + cn) div b

where a is the multiplier, b the base (such that b = 2k), cn the carry. One
may start with c0 = 0.

If a is properly chosen, the period of the generator is a × 2k−1 − 1. In
our implementation, a 32-bit integer is generated by concatenating two 16-bit

109

integers, with a1 = 18000 and a2 = 30903. The period of the 32-bit generator
is therefore:

(a1 × 215 − 1)× (a2 × 215 − 1) ≈ 6× 1017

The second method is more complex and slightly slower but it may be
safer for intensive simulations since it has a much longer period (about 106000)
and produces uncorrelated numbers in 623 dimensions.

We have verified that the three generators pass Marsaglia’s DIEHARD
battery of tests (http://stat.fsu.edu/pub/diehard/).

15.1.2 Type definition

Type RNG Type (defined in unit utypes) is used to identify the generator,
with 3 possible values: RNG MWC, RNG MT, RNG UVAG

15.1.3 Generic functions

These functions are defined in unit urandom and may be used with any of
the three generators.

Choice of generator

The generator is chosen by using one of the statements: SetRNG(RNG MWC),
SetRNG(RNG MT) or SetRNG(RNG UVAG). A default initialization is performed
at the same time.

Initialization

The selected generator can be initialized with the statement InitGen(Seed)
where Seed is an integer.

Uniform random numbers

The following functions are available:

Function Type Bits Domain
IRanGen Integer 32 [-2147483648, 2147483647]

IRanGen31 Integer 31 [0, 2147483647]
RanGen1 Float 32 [0, 1]
RanGen2 Float 32 [0, 1)
RanGen3 Float 32 (0, 1)
RanGen53 Float 53 [0, 1)

110

15.1.4 Specific functions

The following functions are specific of a given generator.

MWC generator

These functions are defined in unit uranmwc

• Procedure InitMWC(Seed) initializes the MWC generator with an in-
teger.

The default initialization performed by SetRNG corresponds to Seed =
118105245.

• Function IRanMWC returns a random integer from the MWC generator.

MT generator

These functions are defined in unit uranmt

• Procedure InitMT(Seed) initializes the MT generator with an integer.

• Procedure InitMTbyArray(InitKey, KeyLength) initializes the MT
generator with an array InitKey[0..(KeyLength - 1)] of unsigned
integers, with KeyLength < 624.

The default initialization performed by SetRNG corresponds to the vec-
tor ($123, $234, $345, $456).

• Function IRanMT returns a random integer from the MT generator.

UVAG generator

These functions are defined in unit uranuvag

• Procedure InitUVAGbyString(KeyPhrase) initializes the UVAG gen-
erator with a string KeyPhrase.

The default initialization performed by SetRNG corresponds to the
string ’abcd’.

• Procedure InitUVAG(Seed) initializes the UVAG generator with an
integer.

• Function IRanUVAG returns a signed integer from the UVAG generator.

111

15.1.5 Gaussian random numbers

These functions use the selected generator.

Normal distribution

These functions are defined in unit urangaus.

• Function RanGaussStd generates a random number from the standard
normal distribution.

The Box-Muller algorithm is used: if x1 and x2 are two uniform random
numbers ∈ (0, 1), the two numbers y1 and y2 defined by:

y1 =
√
−2 lnx1 cos 2πx2 y2 =

√
−2 lnx1 sin 2πx2

follow the standard normal distribution.

• Function RanGauss(Mu, Sigma) generates a random number from the
normal distribution with mean Mu and standard deviation Sigma.

Multinormal distribution

These functions are defined in unit uranmult.

• Procedure RanMult(M, L, Lb, Ub, X) generates a random vector X

from a multidimensional normal distribution. M[Lb..Ub] is the mean
vector, L[Lb..Ub, Lb..Ub] is the Cholesky factor of the variance-
covariance matrix.

To simulate the n-dimensional multinormal distributionN (m,V), where
m is the mean vector and V the variance-covariance matrix, the fol-
lowing algorithm is used:

1. Let u be a vector of n independent random numbers following the
standard normal distribution,

2. Let L be the lower triangular matrix resulting from the Cholesky
factorization of matrix V,

3. Vector x = m+Lu follows the multinormal distributionN (m,V).

• Procedure RanMultIndep(M, S, Lb, Ub, X) generates a random num-
ber from an uncorrelated multidimensional distribution. Here S is sim-
ply the vector of standard deviations.

112

15.2 Markov Chain Monte Carlo

It is not always possible to simulate the distribution of a random variable
with a direct algorithm such as the ones used for normal or multinormal
distributions.

However, there exist iterative algorithms which generate a sequence of
random variables for which the distribution tend towards the desired distri-
bution, after starting from a standard distribution (e. g. uniform).

These random sequences are known as Markov chains and the itera-
tive simulation method is therefore known as Markov chain Monte-Carlo
(MCMC).

There are several MCMC variants. Here we will present the Metropolis-
Hastings method.

Let X a vector of random variables and P (X) its probability density
function (p.d.f.), which is to be simulated. The classical formulation of the
Metropolis-Hastings algorithm is the following:

1. Choose an initial parameter vector X0

2. At iteration n:

(a) Draw a vector u from the multinormal distribution N (Xn−1,V)
where V is the variance-covariance matrix

(b) If r = P (u)/P (Xn−1) > 1, set Xn = u
otherwise if Random(0, 1) < r, set Xn = u
where Random(0, 1) denotes a uniform random number in the
interval [0,1]

3. Set n = n+ 1; goto 2

It is convenient to introduce a function F (X) such that:

P (X) = C exp

[
−F (X)

T

]
⇐⇒ F (X) = −T ln

P (X)

C
(15.1)

where C and T are positive constants. By analogy with statistical ther-
modynamics, T is known as the temperature.

From this equation, it may be seen that:

r =
P (u)

P (Xn−1)
= exp

(
−∆F

T

)

113

where
∆F = F (u)− F (Xn−1)

so, the Metropolis-Hastings algorithm may be rewritten as:

1. Choose an initial parameter vector X0

2. At iteration n:

(a) Draw a vector u from the multinormal distribution N (Xn−1,V)
Set ∆F = F (u)− F (Xn−1)

(b) if ∆F < 0, set Xn = u
otherwise if Random(0, 1) < exp(−∆F/2), set Xn = u

3. Set n = n+ 1; goto 2

The initial variance-covariance matrix V may be diagonal and its ele-
ments may be given large values, so that the initial distribution spans a
relatively large space. When the iterations progress, the matrix converges to
the variance-covariance matrix of the simulated distribution. It is often use-
ful to perform several cycles of the algorithm, with the variance-covariance
matrix being re-evaluated at the end of each cycle.

The vector X corresponding to the lowest value of F is recorded; hence,
the algorithm may be used as a stochastic optimization algorithm for min-
imizing the function F . The advantage of such an algorithm is that it can
‘escape’ from a local minimum (with a probability equal to e−∆F/T) and has
therefore more chances to reach the global minimum, unlike the determinis-
tic optimizers studied in chapter 10, for which only decreases of the function
are acceptable. This application is however restricted by the fact that the
function F must be linked to a p.d.f. by means of eq. (15.1).

This method is implemented in unit umcmc as:

Hastings(Func, T, X, V, Lb, Ub, Xmat, X_min, F_min)

The user must provide :

• the function Func to be minimized (defined as in paragraph 10.2, p.
72)

• the temperature T

• a starting vector X[Lb..Ub]

114

• a starting variance-covariance matrix V[Lb..Ub, Lb..Ub].

On output, Hastings returns:

• the mean of the simulated distribution in X

• its variance-covariance matrix in V

• a matrix of simulated vectors in Xmat (one vector by line)

• the vector which minimizes the function in X min

• the value of the function at the minimum in F min (corresponds to the
mode of the simulated distribution).

The behavior of the algorithm can be controlled with the following pro-
cedure:

InitMHParams(NCycles, MaxSim, SavedSim)

where:

• NCycles is the number of cycles (default = 10)

• MaxSim is the maximum number of simulations at each cycle (default
= 1000)

• SavedSim is the number of simulated vectors which are saved in matrix
Xmat. Only the last SavedSim vectors from the last cycle are saved.
(default = 1000)

The current values of these parameters can be retrieved with the proce-
dure GetMHParams(NCycles, MaxSim, SavedSim).

After a call to Hastings, function MathErr will return one of the following
codes:

• OptOk if no error occurred

• MatNotPD if the variance-covariance matrix is not positive definite

The random number generator is re-initialized at the start of the algo-
rithm, so that a different result will be obtained for each call of the subrou-
tine.

115

15.3 Simulated Annealing

Simulated annealing (SA) is an extension of the Metropolis-Hastings algo-
rithm which tries to find the global minimum of any function (not necessarily
a p.d.f.). Here the temperature starts from a high value and is progressively
decreased as the algorithm progresses towards the minimum. The optimized
parameters may then be refined with a local optimizer (chapter 10).

The implementations used in DMath is a modification of a Fortran pro-
gram written by B. Goffe (http://www.netlib.org/simann).

With the notations:

F (X) : function to be minimized
δX : range of X
Fmin : minimum of F (X)
T : temperature
NT : number of loops at constant T
NS : number of loops before adjustement of δX
RT : temperature reduction factor
Nacc : number of accepted function increases

the algorithm may be described as follows:

• initialize T,X, δX

• repeat

◦ repeat NT times

? repeat NS times

for each parameter Xi :
� pick a random value X ′i in the interval Xi ± δXi

� compute F (X ′i)
� accept or reject X ′i according to Metropolis criterion
� update Nacc

� update Fmin if necessary

? adjust step length δXi so as to maintain an acceptance ratio
of about 50%

◦ T ← T ·RT

• until Nacc = 0 or T < Tmin or |Fmin| < ε

116

The threshold values Tmin and ε are fixed at 10−30 in our implementation.

At the beginning of the iterations, while we are away from the minimum,
it makes sense to choose a high probability of acceptance, for instance p = 1

2
.

It is then possible to perform a given number of random drawings and to
compute the median M of the increases of function F , from which the initial
temperature T0 is deduced by:

p = exp
(
−M
T0

)
=

1

2
⇒ T0 =

M

ln 2

This procedure is implemented in unit usimann as:

SimAnn(Func, X, Xmin, Xmax, Lb, Ub, F_min)

where:

• Func is the function to be minimized (defined as in paragraph 10.2, p.
72)

• X[Lb..Ub] is the parameter vector

• Xmin, Xmax are the bound values of X

The optimized parameters are returned in X and the corresponding func-
tion value in F min

The user must provide reasonable values of Xmin and Xmax as well as a
starting value for X. It is convenient to pick a random value in the range
specified by Xmin and Xmax.

The behavior of the algorithm can be controlled with the following pro-
cedure:

InitSAParams(NT, NS, NCycles, RT)

where:

• NT, NS, RT correspond to the variables NT , NS and RT in the algo-
rithm. Default values are 5, 15 and 0.9 respectively.

• NCycles is the number of cycles (default = 1).

In some difficult situations, it may be useful to perform several cycles of
the algorithm. Each cycle will start with the optimized parameters X from the
previous cycle and the temperature will be re-initialized (the bound values
Xmin, Xmax remaining the same).

It is possible to record the progress of the iterations in a log file. This file
is created with:

117

SA_CreateLogFile(LogFileName)

If the file is created, the following information will be stored:

• iteration number (each iteration corresponds to a single temperature)

• temperature value

• lowest function value obtained at this temperature

• number of function increases

• number of accepted increases

The file will be automatically closed upon return from SimAnn.

15.4 Genetic Algorithm

Genetic Algorithms (GA) are another class of stochastic optimization meth-
ods which try to mimick the law of natural selection in order to optimize a
function F (X).

There are several implementations of these algorithms. We use a method
described by E. Perrin et al. (Recherche operationnelle / Operations Re-
search, 1997, 31, 161-201). In this version, the vector X is considered as the
‘phenotype’ of an ‘individual’ belonging to a ‘population’. This phenotype is
determined by two ‘chromosomes’ C1 and C2 and a vector of ‘dominances’
D such that:

Xi = DiC1i + (1−Di)C2i (0 < Di < 1) (15.2)

A population is defined by a matrix P, such that each row of the matrix
corresponds to a vector X.

The population is initialized by taking vectors C1 and C2 at random in
a given interval, vector D at random in (0,1) then applying eq. (15.2) to
obtain the corresponding X vectors.

At each step (‘generation’) of the algorithm:

1. The function values F (X) are computed for each vector X and the
NS individuals having the lowest function values (the ‘survivors’) are
selected.

118

2. The remaining individuals are discarded and replaced by new ones,
generated as follows:

(a) Two ‘parents’ are chosen at random in the selected sub-population
and a ‘child’ is generated by:

• taking the vectors C1 and C2 at random from the parents

• generating a new vector D

• computing the new X according to eq. (15.2)

This process is repeated until the function value for the child is
lower than the lowest function value of the two parents.

(b) The child is ‘mutated’ (i. e. its vectors are reinitialized at random)
with a probability MR

(c) The child is made ‘homozygous’ (i. e. its vectors C1 and C2 are
made identical to its vector X) with a probability HR

This procedure is implemented in unit ugenalg as:

GenAlg(Func, X, Xmin, Xmax, Lb, Ub, F_min)

where the parameters have the same meaning as in SimAnn.

The behavior of the algorithm can be controlled with the following pro-
cedure:

InitGAParams(NP, NG, SR, MR, HR)

where:

• NP is the population size (default = 200)

• NG is the number of generations (default = 40)

• SR is the survival rate (default = 0.5)

• MR is the mutation rate (default = 0.1)

• HR is the probability of homozygosis (default = 0.5)

A log file may also be created with:

GA_CreateLogFile(LogFileName)

The file will contain the iteration (generation) number and the optimized
function value for this generation.

119

15.5 Demo programs

These programs are located in the demo\console\random subdirectory.

Test of MWC generator

Program testmwc.pas picks 20000 random numbers and displays the next 6
together with the correct values obtained with the default initialization.

Test of MT generator

Program testmt.pas writes 1000 integer numbers and 1000 real numbers
from functions IRanGen and RanGen2, using the default initialization.

The output of this program should be similar to the contents of file mt.txt

Test of UVAG generator

Program testuvag.pas writes 1000 integer numbers from function IRanGen,
using the default initialization. The output should be similar to the contents
of file uvag.txt

File of random numbers

Program randfile.pas generates a binary file of 32-bit random integers to
be used as input for the DIEHARD program. The user must specify the
number of random integers to be generated (default is 3,000,000).

Gaussian random numbers

Program testnorm.pas picks a random sample of size N from a gaussian
distribution with known mean and standard deviation (SD), estimates mean
(m) and SD (s) from the sample, and computes a 95% confidence interval
for the mean (i.e. an interval which has a probability of 0.95 to include the
true mean), using the formula:

[
m− 1.96

s√
N
,m+ 1.96

s√
N

]

This formula is valid for N > 30.

120

Multinormal distribution

Program ranmul.pas simulates a multi-normal distribution. The example is
a 3-dimensional distribution with the following means, standard deviations,
and correlation matrix:

m =

 1
2
3

 s =

 0.1
0.2
0.3

 R =

 1 0.25 0.5
0.25 1 −0.25
0.5 −0.25 1


These data are stored in the input file ranmul.dat. The results of the

simulation are stored in file ranmul.out

Multi-lognormal distribution

A vector x is said to follow a multi-lognormal distribution LN (m,V) if the
vector x◦ defined by:

x◦i = ln(xi)

follows a multinormal distribution N (m◦,V◦)

It may be shown that:

m◦i = ln(xi)− V ◦ii

V ◦ij = ln

(
1 +

Vij
mimj

)
So, if x◦ is a random vector drawn from N (m◦,V◦), x = exp(x◦) will be

a vector from LN (m,V)

Program ranmull.pas simulates a multi-lognormal distribution. The ex-
ample is a 2-dimensional distribution with the following means, standard
deviations, and correlation coefficient:

m =

[
17.4178
5.3173

]
s =

[
6.1259
2.5158

]
r = 0.5672

These data are stored in the input file ranmull.dat. The results of the
simulation are stored in file ranmull.out

Markov Chain Monte-Carlo

Although MCMC methods are best suited when there is no direct simulation
algorithm available, we will use the Metropolis-Hastings method to simulate
the previous multinormal distribution (program testmcmc.pas).

121

First, we have to define the function to be optimized. The probability
density for a n-dimensional normal distribution N (m,V) is:

P (X) =
1√

(2π)n|V|
exp

[
−1

2
(X−m)>V−1(X−m)

]

So, according to eq. 15.1, T = 2 and:

F (X) = (X−m)>V−1(X−m)

Then, we have to define a starting vector Xsim and variance-covariance
matrix Vsim. In order to show that the algorithm can converge from a point
chosen relatively far away from the optimum, we have chosen Xsim = 3m
and Vsim = diag(10Vii).

With the default initializations (10 cycles of 1000 simulations each), the
results of a typical run were:

m̂ =

 1.01
2.02
3.01

 ŝ =

 0.099
0.210
0.320

 R̂ =

 1 0.286 0.467
0.286 1 −0.299
0.467 −0.299 1


Simulated Annealing

Program simann.pas uses simulated annealing to minimize a set of 10 notori-
ously difficult functions (most of them presenting multiple minima). Several
successive runs of the program may be necessary to have all functions min-
imized (the random number generator being reinitialized at each call of the
SimAnn procedure).

Genetic Algorithm

Program genalg.pas optimizes the same functions than the previous pro-
gram but with genetic algorithm. Here, too, it may be necessary to run the
program several times.

122

Chapter 16

Statistics

This chapter describes some of the statistical functions available in DMath.
The specific problem of curve fitting will be considered in subsequent chap-
ters.

16.1 Descriptive statistics

16.1.1 Minimum, maximum, mean and standard devi-
ation

The following functions are defined in unit umeansd :

• Function Min(X, Lb, Ub) returns the minimum of sample X[Lb..Ub]

• Function Max(X, Lb, Ub) returns the maximum of sample X[Lb..Ub]

• Function Mean(X, Lb, Ub) returns the mean of sample X[Lb..Ub],
defined by:

m =
1

n

n∑
i=1

xi

where n is the size of the sample.

• Function StDev(X, Lb, Ub, M) returns the estimated standard devi-
ation of the population from which sample X is extracted, M being the
mean of the sample. This standard deviation is defined by:

s =

√√√√ 1

n− 1

n∑
i=1

(xi −m)2

These estimated standard deviations are used in statistical tests.

123

• Function StDevP(X, Lb, Ub, M) returns the standard deviation of X,
considered as a whole population. This standard deviation is defined
by:

σ =

√√√√ 1

n

n∑
i=1

(xi −m)2

16.1.2 Median

Function Median(X, Lb, Ub, Sorted), defined in unit umedian, returns the
median of X, defined as the number xmed which has equal numbers of values
above it and below it. If the array X has been sorted, the median is:

xmed = xn+1
2

(n odd)

xmed = 1
2

(
xn

2
+ xn

2
+1

)
(n even)

The parameter Sorted indicates if array X has been sorted before calling
function Median. If not, it will be sorted within the function (the array X

will therefore be modified).

Sorting (in ascending order) is performed by calling a procedure QSort(X,
Lb, Ub), defined in unit uqsort, which implements the ‘Quick Sort’ algo-
rithm. Of course, this procedure may be called outside function Median.
There is also a DQSort for sorting in descending order.

16.1.3 Correlation coefficient

Function Correl(X, Y, Lb, Ub), defined in unit ucorrel, returns the cor-
relation coefficient between X and Y:

r =

∑n
i=1(xi −mx)(yi −my)√∑n

i=1(xi −mx)2
∑n
i=1(yi −my)2

where mx and my denote the means of the samples.

16.1.4 Skewness and kurtosis

The following functions are defined in unit uskew :

124

• Function Skewness(X, Lb, Ub, M, Sigma) returns the skewness of X,
with mean M and standard deviation Sigma. This parameter is defined
by:

γ1 =
1

nσ3

n∑
i=1

(xi −m)3

Skewness is an indicator of the symmetric nature of the distribution.
It is zero for a symmetric distribution (e. g. Gaussian), and positive
(resp. negative) for an assymetric distribution with a tail extending
towards positive (resp. negative) x values.

• Function Kurtosis(X, Lb, Ub, M, Sigma) returns the kurtosis of X,
with mean M and standard deviation Sigma. This parameter is defined
by:

γ2 =
1

nσ4

n∑
i=1

(xi −m)4 − 3

Kurtosis is an indicator of the flatness of the distribution. It is zero for a
Gaussian distribution, and positive (resp. negative) if the distribution
is more (resp. less) ‘sharp’ than the Gaussian.

16.2 Comparison of means

16.2.1 Student’s test for independent samples

We have 2 independent samples with sizes n1, n2, means m1,m2, standard
deviations s1, s2. It is assumed that the samples are taken from gaussian
populations with means µ1, µ2 and equal variances. The sample means are
compared by computing the t-statistic:

t =
m1 −m2

s
√

1/n1 + 1/n2

where s2 is the estimation of the common variance:

s2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

If n1 ≥ 30 and n2 ≥ 30, the conditions of normality and equal variances
are no longer required and the formula becomes:

t =
m1 −m2√

s2
1/n1 + s2

2/n2

125

The null hypothesis is (H0) : µ1 = µ2

The alternative hypothesis (H1) depends on the test:

One-tailed test (H1) : µ1 > µ2 ⇒ reject (H0) if t > t1−α
(H1) : µ1 < µ2 ⇒ reject (H0) if t < t1−α

Two-tailed test (H1) : µ1 6= µ2 ⇒ reject (H0) if |t| > t1−α/2

where t1−α is the value of the Student variable such that the cumulative
probability function Φν(t) = 1− α at ν = n1 + n2 − 2 d.o.f. (cf. chap. 5).

If H0 is rejected, the difference of the means is considered significant at
risk α

This test is implemented in the following procedure (defined in unit
ustudind):

StudIndep(N1, N2, M1, M2, S1, S2, T, DoF)

where (N1, N2) are the sizes of the samples, (M1, M2) their means and
(S1, S2) the estimated standard deviations (computed with StDev). The
procedure returns Student’s t in T and the number of degrees of freedom in
DoF.

16.2.2 Student’s test for paired samples

If the samples are paired (e. g. the same patients before and after a treat-
ment), the t-statistic becomes:

t =
md

sd

√
n

where md and sd are, respectively, the mean and standard deviations of the
differences (x1i− x2i) between the paired values in the two samples, and n is
the common size of the samples.

Apart from this, the test is carried out as with the independent case, with
(n− 1) d. o. f.

This test is implemented in the following procedure (defined in unit
ustdpair):

StudPaired(X, Y, Lb, Ub, T, DoF)

where X[Lb..Ub], Y[Lb..Ub] are the two samples. The procedure re-
turns Student’s t in T and the number of degrees of freedom in DoF.

After a call to this procedure, function MathErr returns one of the fol-
lowing error codes:

126

• FOk (0) if no error occurred

• FSing (-2) if sd = 0

• MatErrDim (-3) if X and Y have different sizes.

16.2.3 One-way analysis of variance (ANOVA)

We have k independent samples with sizes ni, means mi, standard deviations
si. It is assumed that the samples are taken from gaussian populations with
means µi and equal variances. The goal is to compare the k means.

The following equation holds:

SSt = SSf + SSr (16.1)

with:

SSt =
k∑
i=1

ni∑
j=1

(xij − x̄)2 SSf =
k∑
i=1

ni(mi − x̄)2 SSr =
k∑
i=1

(ni − 1)s2
i

• x̄ is the global mean:

x̄ =
1

n

k∑
i=1

nimi n =
k∑
i=1

ni

• SSt is the total sum of squares ; it has (n− 1) degrees of freedom

• SSf is the factorial sum of squares ; it has (k − 1) degrees of freedom.

• SSr is the residual sum of squares ; it has (n− k) degrees of freedom

Note that the degrees of freedom (d.o.f.) are additive, just like the sums
of squares:

(n− 1) = (k − 1) + (n− k)

The variances are defined by dividing each sum of squares by the corre-
sponding number of d.o.f.

Vt =
SSt
n− 1

Vf =
SSf
k − 1

Vr =
SSr
n− k

These are the total, factorial, and residual variances, respectively. Note
that the variances, unlike the sum of squares, are not additive!

127

The comparison of means is performed by computing the F -statistic:

F =
Vf
Vr

The null hypothesis is (H0) : µ1 = µ2 = · · · = µk

(H0) is rejected if F > F1−α where F1−α is the value of the Fisher-Snedecor
variable such that the cumulative probability function Φν1,ν2(F) = 1 − α at
ν1 = k − 1 and ν2 = n− k d.o.f. (cf. chap. 5).

This algorithm is implemented in the following procedure (defined in unit
uanova1):

AnOVa1(Ns, N, M, S, V_f, V_r, F, DoF_f, DoF_r)

where Ns is the number of samples, N[1..Ns] are the sizes of the sam-
ples, M[1..Ns] their means and S[1..Ns] the estimated standard deviations
(computed with StDev).

The procedure returns the factorial and residual variances in V f and V r,
their ratio in F and their numbers of d. o. f. in DoF f and DoF r.

After a call to this procedure, function MathErr returns one of the fol-
lowing error codes:

• FOk (0) if no error occurred

• FSing (-2) if n− k ≤ 0

• MatErrDim (-3) if the arrays have non-compatible dimensions

16.2.4 Two-way analysis of variance

We assume here that the means of the samples depend on two factors A and
B, such that the sample corresponding to the i-th level of A and the j-th
level of B has mean mij and standard deviation sij.

It is also assumed that all samples are taken from gaussian populations
with equal variances, and that they have the same size n.

The previous equations become:

x̄ =
1

npq

p∑
i=1

q∑
j=1

nmij

SSt =
p∑
i=1

q∑
j=1

(xij−x̄)2 SSf =
p∑
i=1

q∑
j=1

n(mij−x̄)2 SSr =
p∑
i=1

q∑
j=1

(n−1)s2
ij

128

with npq − 1, pq − 1, and (n− 1)pq d.o.f., respectively.

In addition, the factorial sum of squares can be splitted into three terms:

SSA = qn
p∑
i=1

(mi. − x̄)2 ; (p− 1) d.o.f.

SSB = pn
q∑
j=1

(m.j − x̄)2 ; (q − 1) d.o.f.

SSAB = n
p∑
i=1

q∑
j=1

(mij −mi. −m.j + x̄)2 ; (p− 1)(q − 1) d.o.f.

where mi. and m.j are the conditional means:

mi. =
1

q

q∑
j=1

mij m.j =
1

p

p∑
i=1

mij

that is, the means of the lines and columns of matrix [mij]

These sums of squares represent, respectively, the influence of factor A,
the influence of factor B, and the interaction of the two factors (that is, the
fact that the influence of one factor depends on the level of the other factor).

The variances are computed as before:

VA =
SSA
p− 1

VB =
SSB
q − 1

VAB =
SSAB

(p− 1)(q − 1)
Vr =

SSr
(n− 1)pq

There are three null hypotheses:
(H0)A : The populations means do not depend on factor A
(H0)B : The populations means do not depend on factor B
(H0)AB : There is no interaction between the two factors

Each hypothesis is tested by computing the corresponding F -statistic
(for instance, FA = VA/Vr for testing (H0)A) and comparing with the critical
value F1−α

Special case: n = 1. If there is only one observation per sample, the
residual variance is zero. The null hypotheses (H0)A and (H0)B are tested
with FA = VA/VAB and FB = VB/VAB. The interaction of the factors cannot
be tested.

This algorithm is implemented in the following procedure (defined in unit
uanova2):

129

AnOVa2(NA, NB, Nobs, M, S, V, F, DoF)

where NA and NB are the number of levels of the factors A and B, Nobs
the common number of observations, N the common size of the samples,
M[1..NA, 1..NB] the matrix of means and S[1..NA, 1..NB] the matrix
of standard deviations, such that the rows correspond to factor A and the
columns to factor B.

The procedure returns the variances in vector V[1..4] = [VA, VB, VAB, Vr],
the variance ratios in F[1..3] = [FA, FB, FAB], and the degrees of freedom
in DoF[1..4]. If N = 1, the last element of each vector disappears.

After a call to this procedure, function MathErr returns one of the fol-
lowing error codes:

• FOk (0) if no error occurred

• MatErrDim (-3) if the arrays have non-compatible dimensions.

16.3 Comparison of variances

16.3.1 Comparison of two variances

We have 2 independent samples with sizes n1, n2, standard deviations s1, s2.
It is assumed that the samples are taken from gaussian populations with
variances σ2

1, σ
2
2.

Snedecor’s test uses the following statistic:

F =
max(s2

1, s
2
2)

min(s2
1, s

2
2)

which is compared with the critical value F1−α/2 (two-tailed test).

This test is implemented in the following procedure (defined in unit
usnedeco):

Snedecor(N1, N2, S1, S2, F, DoF1, DoF2)

where (N1, N2) are the sizes of the samples and (S1, S2) the estimated
standard deviations. The procedure returns the variance ratio in F and the
numbers of d. o. f. in DoF1 and DoF2.

130

16.3.2 Comparison of several variances

We have k independent samples with sizes ni, standard deviations si. It is
assumed that the samples are taken from gaussian populations with variances
σ2
i . The goal is to compare the k variances.

Bartlett’s test uses the following statistic:

B =
1

λ

[
(n− k) lnVr −

k∑
i=1

(ni − 1) ln s2
i

]

λ = 1 +
1

3(k − 1)

[
k∑
i=1

1

ni − 1
− 1

n− k

]

where n =
∑
ni and Vr is the residual variance, as defined previously (§

16.2.3).

The null hypothesis is:

(H0) : σ2
1 = σ2

2 = · · · = σ2
k

Under (H0), B follows approximately the χ2 distribution with (k − 1) d.
o. f. The hypothesis is tested by comparing B with the value χ2

1−α such that
the cumulative probability function Φν(χ

2) = 1 − α at ν = k − 1 d.o.f. (cf.
chap. 5).

This test is implemented in the following procedure (defined in unit
ubartlet):

Bartlett(Ns, N, S, Khi2, DoF)

where Ns is the number of samples, N[1..Ns] are the sizes of the samples
and S[1..Ns] the estimated standard deviations. The procedure returns
Bartlett’s statistic in Khi2 and the number of d. o. f. in DoF. The error
codes are the same than for AnOVa1

16.4 Non-parametric tests

Non-parametric tests are used when the assumptions needed by the classical
tests (gaussian populations with equal variances) are not fulfilled. They are
also called rank tests because they work with the ranks of the values, rather
than the values themselves.

The relevant procedures are all defined in unit unonpar.

131

16.4.1 Mann-Whitney test

This test compares the means of two independent samples. It is the non-
parametric analog of Student’s test for independent samples.

The test uses the following statistic:

U = min(u1, u2)

with:

u1 = n1n2 +
n1(n1 + 1)

2
− r1 ; u2 = n1n2 +

n2(n2 + 1)

2
− r2

where (n1, n2) are the sample sizes, (r1, r2) the sums of the ranks of the
two samples.

If n1 ≥ 20 and n2 ≥ 20, the variable:

ε =
U − µ
σ

with:

µ =
n1n2

2
; σ =

√
n1n2(n1 + n2 + 1)

12

follows the standard normal distribution under (H0).

This test is implemented in the following procedure :

Mann_Whitney(N1, N2, X1, X2, U, Eps)

where N1 and N2 are the sample sizes, X1[1..N1] and X2[1..N2] are the
two samples. The procedure returns Mann-Whitney’s statistic in U and the
associated normal variable in Eps.

16.4.2 Wilcoxon test

This test compares the means of two paired samples. It is the non-parametric
analog of Student’s test for paired samples.

The test uses the following statistic:

T = min(T+, T−)

where T+ and T− are the sums of the ranks of the positive and negative
differences between the values of the two samples.

132

If the sample size is N > 25, the variable:

ε =
T − µ
σ

with:

µ =
N(N + 1)

4
; σ =

√
N(N + 1)(2N + 1)

24

follows the standard normal distribution under (H0).

This test is implemented in the following procedure :

Wilcoxon(X, Y, Lb, Ub, Ndiff, T, Eps)

where X[Lb..Ub] and Y[Lb..Ub] are the two samples. The procedure
returns the number of non-zero differences in Ndiff, Wilcoxon’s statistic in
T and the associated normal variable in Eps.

16.4.3 Kruskal-Wallis test

This test compares the means of several independent samples. It is the non-
parametric analog of one-way ANOVA.

The test uses the following statistic:

H =
12

n(n+ 1)

k∑
i=1

r2
i

ni
− 3(n+ 1)

where k is the number of samples, ni the size of sample i, ri the sum of
the ranks for sample i and n the total size.

If ni > 5 ∀i, H follows the χ2 distribution with k − 1 d.o.f.

This test is implemented in the following procedure :

Kruskal_Wallis(Ns, N, X, H, DoF)

where Ns is the number of samples, N[1..Ns] is the vector of sizes and
X the sample matrix (with the samples as columns). The procedure returns
the Kruskal-Wallis statistic in H and the number of d. o. f. in DoF.

133

16.5 Statistical distribution

A statistical distribution is generated by binning data into a set of statistical
classes]xi, xi+1]. Each class is characterized by the following parameters:

• its bounds xi, xi+1

• the number of values ni contained in the class

• the frequency fi = ni/N where N is the total number of values

• the density di = fi/(xi+1 − xi)

This structure is implemented in DMath as:

type StatClass = record { Statistical class }

Inf : Float; { Lower bound }

Sup : Float; { Upper bound }

N : Integer; { Number of values }

F : Float; { Frequency }

D : Float; { Density }

end;

A distribution is generated with the following procedure (defined in unit
udistrib):

Distrib(X, Lb, Ub, A, B, H, C)

where X[Lb..Ub] is the original set of values, A and B the lower and upper
bounds of the distribution and H the common width of the classes, according
to the following scheme:

C[1] C[2] C[M]

]-------]-------].......]-------]-------]

A A+H A+2H B=A+M*H

The distribution is returned in C which is an array of statistical classes,
allocated by DimStatClassVector(C, M).

134

16.6 Comparison of distributions

16.6.1 Observed and theoretical distributions

An observed distribution may be compared to a theoretical one by using the
following statistics:

• Pearson’s χ2 :

χ2 =
p∑
i=1

(Oi − Ci)2

Ci

• Woolf’s G :

G = 2
p∑
i=1

Oi ln
Oi

Ci

where Oi and Ci denote the observed and theoretical numbers of values
in class i, and p the number of classes.

The null hypothesis is (H0): the observed distribution conforms to the
theoretical one (it is a test for conformity)

Under (H0), both statistics follow the χ2 distribution with (p − 1 − Ne)
d. o. f., where Ne is the number of parameters which have been estimated
to compute the Ci values (e. g. Ne = 2 if the mean and standard deviation
of the distribution have been estimated).

(H0) is rejected if the chosen statistic is higher than the critical value
χ2

1−α for the chosen risk α.

Pearson’s statistic is an approximation of Woolf’s statistic. It is usually
recommended to use it only if Ci ≥ 5 ∀i.

The following procedures are defined in units ukhi2 and uwoolf, respec-
tively:

Khi2_Conform(N_cls, N_estim, Obs, Calc, Khi2, DoF)

Woolf_Conform(N_cls, N_estim, Obs, Calc, G, DoF)

where N cls denotes the number of classes, N estim the number of es-
timated parameters, Obs[1..N cls] and Calc[1..N cls] the observed and
theoretical distributions. The statistic is returned in Khi2 or G and the num-
ber of d. o. f. in DoF.

135

16.6.2 Several observed distributions

To compare several observed distributions, we can group them into a contin-
gency table O such that Oij denotes the number of values for class i in the
j-th distribution.

The Pearson and Woolf statistics may then be computed as:

χ2 =
p∑
i=1

q∑
j=1

(Oij − Cij)2

Cij

G = 2
p∑
i=1

q∑
j=1

Oij ln
Oij

Cij

where p the number of classes, q the number of distributions, and Cij the
theoretical value of Oij, computed as:

Cij =
Ni.N.j

N

where Ni. is the sum of terms in line i, N.j is the sum of terms in column j,
and N the global sum of all terms in the matrix (N =

∑
iNi. =

∑
j N.j).

The null hypothesis is (H0): the observed distributions come from the
same population (it is a test for homogeneity or independence).

Under (H0), both statistics follow the χ2 distribution with (p− 1)(q− 1)
d. o. f.

The following procedures are defined in units ukhi2 and uwoolf, respec-
tively:

Khi2_Indep(N_lin, N_col, Obs, Khi2, DoF)

Woolf_Indep(N_lin, N_col, Obs, G, DoF)

where N lin and N col are the numbers of lines and columns (i. e. p and
q), and Obs[1..N lin, 1..N col] is the matrix of observed distributions.
The statistic is returned in Khi2 or G and the number of d. o. f. in DoF.

16.7 Demo programs

16.7.1 Console programs

These programs are located in the demo\console\stat subdirectory.

136

Descriptive statistics, comparison of means and variances

Program stat.pas performs a statistical analysis of hemoglobin concentra-
tions in two samples of 30 men and 30 women. The computed parameters
are the mean, standard deviation, skewness and kurtosis. The means are
compared by Student’s test (two-tailed) and Mann-Whitney’s test, and the
variances are compared by Snedecor’s test.

Student’s test for paired samples

Program student.pas compares the means of two paired samples, using
Student’s and Wilcoxon’s two-tailed tests.

One-way analysis of variance

Program av1.pas compares the means of 5 independent samples, each with
12 observations, using one-way ANOVA and the Kruskal-Wallis test. In
addition, the variances of the samples are compared with Bartlett’s test.

Two-way analysis of variance

• Program av2.pas compares the means of 4 samples, depending on two
factors, using two-way ANOVA. Each sample contains 12 observations.

• Program av2a.pas performs two-way ANOVA with one observation
per sample.

Comparison of distributions

Program khi2.pas performs both χ2 and Woolf’s tests, first to compare an
observed distribution with a theoretical one, and then to analyse a contin-
gency table.

16.7.2 BGI program

Program histo.pas (located in the demo\bgi\stat subdirectory) uses the
hemoglobin data from program stat.bas to generate a statistical distribu-
tion.

The first step determines a suitable range for the data. This is done by
calling procedure Interval (defined in unit uinterv):

Interval(X[1], X[N], 5, 10, XMin, XMax, XStep);

137

The arguments 5 and 10 represent the minimal and maximal number of
classes which is desired.

The second step generates the distribution, using the ranges determined
in the previous step:

Ncls := Round((Xmax - Xmin) / XStep);

DimStatClassVector(C, Ncls);

Distrib(X, 1, N, Xmin, Xmax, XStep, C);

This distribution is then compared with the normal distribution, using
both χ2 and Woolf’s tests. The theoretical Ci values are computed from the
cumulative probability function for the normal distribution having the same
mean and standard deviation than the observed distribution.

The program plots an histogram of the observed distribution, together
with the curve corresponding to the normal distribution. This curve is gen-
erated from the probability density function:

function PltFunc(X : Float) : Float;

begin

PltFunc := DNorm((X - M) / S) / S;

end;

where M, S are the mean and standard deviation of the observed distribu-
tion, and DNorm is the probability density of the standard normal distribution
(see chapter 5). Note that the histogram is constructed with the class densi-
ties as ordinates, so that a comparison with the plotted curve can be made.

138

Chapter 17

Linear regression

This chapter describes the routines available in DMath for fitting a straight
line by linear regression. Other types of curve fitting will be described in
subsequent chapters.

17.1 Straight line fit

The problem is to determine the equation of the line which comes closest to
a set of points.

The model is defined by the equation:

y = a+ bx

• x is the independent (or ‘explicative’) variable

• y is the dependent (or ‘explained’) variable

• a and b are the model parameters

Assume that the n points (x1, y1), (x2, y2), · · · (xn, yn) are perfectly lined,
so that each of them verifies the equation of the straight line:

y1 = a+ bx1

y2 = a+ bx2

· · · · · · · · ·

yn = a+ bxn

139

Or in matrix form:

y = Xβ ⇐⇒ y −Xβ = 0

where:

y =


y1

y2

· · ·
yn

 X =


1 x1

1 x2

· · · · · ·
1 xn

 β =

[
a
b

]

In the general case, the points are not exactly lined, so that:

y −Xβ = r

where r is the vector of residuals:

r = [r1, r2 · · · rn]> = y − ŷ

where ŷ = Xβ

It is possible to compute β so that ‖ r ‖ is minimal (least squares crite-
rion).

‖ r ‖2= r>r = r2
1 + r2

2 + · · ·+ r2
n =

n∑
i=1

r2
i =

n∑
i=1

(yi − ŷi)2 = SSr

where ŷi = a+ bxi and SSr is the sum of squared residuals.

Several methods allow the determination of β under the least squares
criterion. The QR and SVD algorithms have been described previously. Here
we will study the method of normal equations.

It may be shown that β is the solution of the system:

Aβ = c

with:
A = X>X c = X>y

so:
β = A−1c = (X>X)−1(X>y)

The matrices may be expressed in terms of statistical sums:

A =

[
n Σxi

Σxi Σx2
i

]
c =

[
Σyi

Σxiyi

]

A−1 =
1

nΣx2
i − (Σxi)2

[
Σx2

i −Σxi
−Σxi n

]

β =
1

nΣx2
i − (Σxi)2

[
Σx2

iΣyi − ΣxiΣxiyi
−ΣxiΣyi + nΣxiyi

]

140

17.2 Analysis of variance

The following equation holds:

SSt = SSe + SSr (17.1)

with:

SSt =
n∑
i=1

(yi − ȳ)2 SSe =
n∑
i=1

(ŷi − ȳ)2 SSr =
n∑
i=1

(yi − ŷi)2

• ȳ is the mean of the y values:

ȳ =
1

n

n∑
i=1

yi

• SSt is the total sum of squares ; it has (n− 1) degrees of freedom

• SSe is the explained sum of squares ; it has 1 degree of freedom.

• SSr is the residual sum of squares ; it has (n− 2) degrees of freedom

Note that the degrees of freedom (d.o.f.) are additive, just like the sums
of squares:

(n− 1) = 1 + (n− 2)

The variances are defined by dividing each sum of squares by the corre-
sponding number of d.o.f.

Vt =
SSt
n− 1

Ve = SSe Vr =
SSr
n− 2

These are the total, explained, and residual variances, respectively. Note
that the variances, unlike the sum of squares, are not additive!

The following quantities are derived from the above equations:

• the coefficient of determination r2

r2 =
SSe
SSt

r2 represents the percentage of the variations of y which are ‘explained’
by the independent variable. It is always comprised between 0 and 1.
A value of 1 indicates a perfect fit.

141

• the correlation coefficient r

It is the square root of the coefficient of determination, with the sign
of the slope b. It is therefore comprised between -1 and 1.

• the residual standard deviation sr

It is the square root of the residual variance (sr =
√
Vr). It is an esti-

mate of the error made on the measurement of the dependent variable
y. It should be 0 for a perfect fit.

• the variance ratio F

It is the ratio of the explained variance to the residual variance (F =
Ve/Vr). It should be infinite for a perfect fit.

17.3 Precision of parameters

The matrix:

V = Vr ·A−1 = Vr · (X>X)−1

is called the variance-covariance matrix of the parameters. It is a sym-
metric matrix with the following structure:

V =

[
Var(a) Cov(a, b)

Cov(a, b) Var(b)

]

The diagonal terms are the variances of the parameters, from which the
standard deviations are computed by:

sa =
√

Var(a) sb =
√

Var(b)

The off-diagonal term is the covariance of the two parameters, from which
the correlation coefficient rab is computed by:

rab =
Cov(a, b)

sasb

17.4 Probabilistic interpretation

It is assumed that the residuals (yi − ŷi) are identically and independently
distributed according to a normal distribution with mean 0 and standard
deviation σ (estimated by sr).

142

It may be shown that the regression parameters (a, b) are distributed
according to a Student distribution with (n− 2) d.o.f.

It is therefore possible to compute a confidence interval for each param-
eter, for instance: [

a− t1−α/2 · sa , a+ t1−α/2 · sa
]

where t1−α/2 is the value of the Student variable corresponding to the chosen
probability α (usually α = 0.05). This interval has a probability (1 − α) to
contain the ‘true’ value of the parameter.

It is also possible to compute a ‘critical’ value F1−α from the Fisher-
Snedecor distribution with 1 and (n − 2) d.o.f . The fit is considered satis-
factory if the variance ratio F exceeds 4 times the critical value.

Note : for the straight line fit, F1−α =
(
t1−α/2

)2

17.5 Weighted regression

It is assumed here that the variance vi = σ2
i of the measured value yi is not

constant.

The sums of squares become:

SSt =
n∑
i=1

wi(yi − ȳ)2 SSe =
n∑
i=1

wi(ŷi − ȳ)2 SSr =
n∑
i=1

wi(yi − ŷi)2

where wi denotes the ‘weight’, equal to 1/vi, and ȳ denotes the weighted
mean:

ȳ =

∑n
i=1wiyi∑n
i=1wi

The regression parameters b are estimated by:

b = (X>WX)−1(X>Wy)

where W is the diagonal matrix of weights:

W = diag(w1, w2, · · · , wn) =


w1 0 · · · 0
0 w2 · · · 0
· · · · · · · · · · · ·
0 0 0 wn


143

The values of r2, sr and F , as well as the variance-covariance matrix, are
computed as above (§ 17.2). The normalized residual for the i-th observation
is:

yi − ŷi
σi

= (yi − ŷi)
√
wi

These normalized residuals should follow the standard normal distribution.

17.6 Programming

17.6.1 Regression procedures

The following subroutines are defined in unit ulinfit:

• LinFit(X, Y, Lb, Ub, B, V) for unweighted linear regression

• WLinFit(X, Y, S, Lb, Ub, B, V) for weighted linear regression

• SVDLinFit(X, Y, Lb, Ub, SVDTol, B, V)

Same than LinFit but uses singular value decomposition instead of
normal equations. SVDTol is the threshold under which a singular value
is considered zero. It is expressed as a fraction of the highest singular
value (see paragraph 9.8 for details).

• WSVDLinFit(X, Y, S, Lb, Ub, SVDTol, B, V)

Same than WLinFit but uses singular value decomposition.

The input parameters are:

• X[Lb..Ub], Y[Lb..Ub] : coordinates of points

• S[Lb..Ub] : standard deviations of Y values (noted σi in paragraph
17.5)

The output parameters are:

• B[0..1] : regression parameters

• V[0..1, 0..1] : inverse of the matrix of normal equations (noted A−1

in paragraph 17.3). This is not the variance-covariance matrix. This
one will be computed by the routines described in the next paragraph.

After a call to one of these procedures, function MathErr returns one of
the following error codes:

• MatOk if no error occurred

• MatSing if the matrix of normal equations is quasi-singular

144

17.6.2 Quality of fit

The parameters used to test the quality of the fit are grouped in a user-defined
type:

type

TRegTest = record { Test of regression }

Vr : Float; { Residual variance }

R2 : Float; { Coefficient of determination }

R2a : Float; { Adjusted coeff. of determination }

F : Float; { Variance ratio (explained/residual) }

Nu1, Nu2 : Integer; { Degrees of freedom }

end;

They are computed by the following subroutines (defined in unit uregtest):

• RegTest(Y, Ycalc, LbY, UbY, V, LbV, UbV, Test) for unweighted
regression

• WRegTest(Y, Ycalc, S, LbY, UbY, V, LbV, UbV, Test) for weighted
regression

The input parameters are:

• Y[LbY..UbY] : ordinates of points

• Ycalc[LbY..UbY] : Y values computed from the regression equation,
using the fitted parameters B. This computation must be done before
calling RegTest or WRegTest.

• V[LbV..UbV, LbV..UbV] : the inverse matrix of the normal equations,
as returned by the regression procedures.

The output parameters are:

• V : the variance-covariance matrix of the fitted parameters

• Test : variable of type TRegTest, as defined above.

17.7 Demo programs

17.7.1 BGI programs

These programs are located in demo\bgi\curfit.

145

Unweighted linear regression

Program reglin.pas performs the least squares fit of a straight line, accord-
ing to the following equation:

Y = B[0] + B[1] * X

The parameter vector and the variance-covariance matrix are therefore
declared as:

DimVector(B, 1);

DimMatrix(V, 1, 1);

The program calls procedure LinFit, then computes the theoretical Y
values:

for I := 1 to N do

Ycalc[I] := B[0] + B[1] * XX[I];

Note that this computation must be done before calling procedure RegTest

The critical values of Student’s t and Snedecor’s F are computed for the
chosen probability Alpha by using the functions from chapter 5.

Tc := InvStudent(N - 2, 1 - 0.5 * Alpha);

Fc := InvSnedecor(1, N - 2, 1 - Alpha);

The ouput shows the standardized residuals, equal to (yi − ŷi)/σ, where
σ is estimated by sr. They should be distributed according to the standard
normal distribution.

Weighted linear regression

Program wreglin.pas performs the weighted least squares fit of a straight
line. Here the standard deviations σi of the observed y values are stored in
a vector S defined by the user.

The computations involve the same steps as with the previous program,
except that procedures WLinFit and WRegTest are used, and that the stan-
dardized residuals are computed as (yi − ŷi)/σi

The plot shows the error bars, corresponding to yi ± σi for each point.

146

17.7.2 GUI program

Program curfit.dpr, located in demo\gui\curfit, performs linear and non-
linear regression.

The options are selected by means of a menu. The main options relevant
to linear regression are the following:

• File / Open : reads data from a text file.

The file must have the following structure:

– line 1 : title of study

– line 2 : number of variables (should be 2 here)

– line 3 - 4 : names of variables (one name by line)

– line 5 : number of observations

– following lines : tabulated data (one variable by column, one ob-
servation by line)

The file reglin.dat is an example data file.

• Compute / Select Model : selects the regression model.

Here we need only the linear regression model, which is the default.

• Compute / Select Algorithm : selects the regression algorithm.

Both the Gauss-Jordan method and the Singular Value Decomposition
are available for linear regression. SVD is the default method. It
is possible to set the tolerance under which the singular values are
considered null (see paragraph 9.8).

• Compute / Fit Model : fits the model and writes the results in an
output file.

The output file has the same name than the data file but with the
extension ‘out’.

• Compute / View Results : displays the contents of the output file.

• Graph / Options : sets all graph options, as described in chapter 7

• Graph / Axes and Curves : selects the type of plot.

This option can be used for instance to get a plot of residuals. It is
also possible to display error bars as a given multiple of the residual
standard deviation.

147

148

Chapter 18

Multilinear regression and
principal component analysis

This chapter describes the procedures available in DMath for multilinear
regression, polynomial regression and principal component analysis.

18.1 Multilinear regression

18.1.1 Normal equations

The regression model is:

y = a+ bx1 + cx2 + · · ·

where the xi are m independent variables.

The method of normal equations, studied in chapter 17, is still applicable
with:

X =


1 x11 x12 · · · x1m

1 x21 x22 · · · x2m

· · · · · · · · · · · · · · ·
1 xn1 xn2 · · · xnm


There are p = m+ 1 parameters. The number of observations n must be

such that n > p.

Special case: The xi may be functions of another variable x, as long as
these functions do not contain parameters. For instance:

• Polynomial: y = a+ bx+ cx2 + · · ·

149

• Fourier series: y = a+ b sinx+ c sin 2x+ · · ·

In such cases, the matrix X, the matrix of normal equations A = X>X
and the constant vector c = X>y will have special forms. For instance with
polynomial regression, if d is the degree of the polynomial:

X =


1 x1 x2

1 · · · xd1
1 x2 x2

2 · · · xd2
· · · · · · · · · · · · · · ·
1 xn x2

n · · · xdn



A =


n Σxi Σx2

i · · · Σxdi
Σxi Σx2

i Σx3
i · · · Σxd+1

i

· · · · · · · · · · · · · · ·
Σxdi Σxd+1

i Σxd+2
i · · · Σx2d

i



c =


Σyi

Σxiyi
· · ·

Σxdi yi


It is possible to use these special forms to simplify the computations. For
instance, only the first line and the last column of the above matrix A need
to be computed; the others terms are deduced by shifting.

18.1.2 Analysis of variance

Equation 17.1 still holds with the following modifications:

• the explained sum of squares SSe has (p− 1) degrees of freedom.

• the residual sum of squares SSr has (n− p) degrees of freedom

Note that the degrees of freedom are still additive:

(n− 1) = (p− 1) + (n− p)

The explained and residual variances become:

Ve =
SSe
p− 1

Vr =
SSr
n− p

The quantities r2, sr, F are derived as in § 17.1, but here the correlation
coefficient r is always positive.

150

In multilinear regression, the use of r2 may be misleading because it is
always possible to artificially increase its value by adding more independent
variables or using a higher degree polynomial. To overcome this drawback,
the adjusted coefficient of determination may be used instead:

r2
a = 1− (1− r2)

n− 1

n− p

18.1.3 Precision of parameters

The variance-covariance matrix V is computed as in chapter 17. It is a p× p
symmetric matrix such that:

• the diagonal term Vii is the variance of the i-th parameter

• the off-diagonal term Vij is the covariance of the i-th and j-th param-
eters

The correlation coefficient rij is computed by:

rij =
Vij√
ViiVjj

18.1.4 Probabilistic interpretation

Assuming that the residuals are identically and independently distributed
according to a normal distribution, the regression parameters are distributed
according to a Student distribution with (n − p) d.o.f. Confidence intervals
may be computed as in chapter 17.

The ‘critical’ value F1−α is computed from the Fisher-Snedecor distribu-

tion with (p−1) and (n−p) d.o.f. However, the relationship F1−α =
(
t1−α/2

)2

does not hold if p > 2.

18.1.5 Weighted regression

Weighted multilinear regression may be performed as for the simple linear
case (chap. 17).

151

18.1.6 Programming

Multilinear regression

The following subroutines are available in unit umulfit :

• MulFit(X, Y, Lb, Ub, Nvar, ConsTerm, B, V) for unweighted mul-
tilinear regression

X[Lb..Ub, 1..Nvar] is the matrix of independent variables, Y[Lb..Ub]
is the vector of dependent variable, and ConsTerm is a boolean param-
eter which indicates the presence of a constant term b0. The regression
parameters are returned in B and the inverse matrix in V.

• WMulFit(X, Y, S, Lb, Ub, Nvar, ConsTerm, B, V) for weighted mul-
tilinear regression

The additional parameter S is a vector containing the standard devia-
tions of the observations.

Two alternative procedures are available in unit usvdfit for using singu-
lar value decomposition instead of normal equations:

• SVDFit(X, Y, Lb, Ub, Nvar, ConsTerm, SVDTol, B, V)

Same than MulFit but uses singular value decomposition instead of
normal equations. SVDTol is the threshold under which a singular value
is considered zero. It is expressed as a fraction of the highest singular
value (see paragraph 9.8 for details).

• WSVDFit(X, Y, Lb, Ub, Nvar, ConsTerm, SVDTol, B, V)

Same than WMulFit but uses singular value decomposition.

Polynomial regression

The following procedures are available in unit upolfit :

• PolFit(X, Y, Lb, Ub, Deg, B, V) for unweighted polynomial regres-
sion

Here X[Lb..Ub] and Y[Lb..Ub] are the point coordinates and Deg is
the degree of the polynomial.

• WPolFit(X, Y, S, Lb, Ub, Deg, B, V) for weighted polynomial re-
gression

152

Viatcheslav
Sticky Note
B: TVector[0..Deg]; returns coefficients
V: matrix, 0..Deg,0..Deg variance-covariance matrix

• SVDPolFit(X, Y, Lb, Ub, Deg, SVDTol, B, V)

Same than PolFit but uses singular value decomposition.

• WSVDPolFit(X, Y, S, Lb, Ub, Deg, SVDTol, B, V)

Same than WPolFit but uses singular value decomposition.

After a call to one of these procedures, function MathErr returns one of
the following error codes:

• MatOk if no error occurred

• MatSing if the matrix of normal equations is quasi-singular

• MatErrDim if the array dimensions do not match

18.2 Principal component analysis

18.2.1 Theory

The goal of Principal Component Analysis (PCA) is to replace a set of m
variables x1,x2, · · ·xm, which may be correlated, by another set f1, f2, · · · fm,
called the principal components or principal factors. These factors are inde-
pendent (uncorrelated) variables.

Usually, the algorithm starts with the correlation matrix R which is a
m×m symmetric matrix such that Rij is the correlation coefficient between
variable xi and variable xj.

The eigenvalues λ1, λ2, · · ·λm (in decreasing order) of matrix R are the
variances of the principal factors. Their sum

∑p
i=1 λi is equal to m. So, the

percentage of variance associated with the i-th factor is equal to λi/m.

If C is the matrix of eigenvectors of R, the correlation coefficient between
variable xi and factor fj (sometimes called loading) is:

RCij = Cij
√
λj

The coordinates of the principal factors (sometimes called scores) are
such that:

F = ZC

where Z denotes the matrix of scaled original variables:

Zij =
Xij −mj

sj

153

where mj and sj are the mean and standard deviation of the j-th variable.

Note that the reduced variables have means 0 and variances 1, while the
principal factors have means 0 and variances λi.

In most cases, a limited number of principal factors represent the most
part of the total variance. It is therefore possible to neglect the other factors
and to replace the m original (partially correlated) variables by a smaller set
of independent variables. These variables can then be used in a regression
analysis instead of the original ones (orthogonalized regression).

18.2.2 Programming

The following subroutines are available in unit upca :

• VecMean(X, Lb, Ub, Nvar, M) computes the mean vector M[1..Nvar]
from matrix X[Lb..Ub, 1..Nvar].

• VecSD(X, Lb, Ub, Nvar, M, S) computes the standard deviations S[1..Nvar]
from matrix X and mean vector M.

• ScaleVar(X, Lb, Ub, Nvar, M, S, Z) computes the scaled variables
Z[Lb..Ub, 1..Nvar] from the original variables X, the means M and
the standard deviations S.

• MatVarCov(X, Lb, Ub, Nvar, M, V) computes the variance-covariance
matrix V[1..Nvar, 1..Nvar] from matrix X and mean vector M.

• MatCorrel(V, Nvar, R) computes the correlation matrix R[1..Nvar,

1..Nvar] from the variance-covariance matrix V.

• PCA(R, Nvar, MaxIter, Tol, Lambda, C, Rc) performs the princi-
pal component analysis of the correlation matrix R, which is destroyed.
MaxIter and Tol are the maximum number of iterations and the re-
quested tolerance for the Jacobi method (see paragraph 9.10.2). The
eigenvalues are returned in vector Lambda[1..Nvar], the eigenvec-
tors in the columns of matrix C[1..Nvar, 1..Nvar]. The matrix
Rc[1..Nvar, 1..Nvar] contains the correlation coefficients (loadings)
between the original variables (rows) and the principal factors (columns).

• PrinFac(Z, Lb, Ub, Nvar, C, F) computes the principal factors (scores)
F[Lb..Ub, 1..Nvar] from the scaled variables Z and the matrix of
eigenvectors C.

154

After a call to these procedures, function MathErr returns one of the
following error codes:

• MatOk if no error occurred

• MatErrDim if the array dimensions do not match

• MatNonConv if the iterative procedure (Jacobi method) did not converge
in subroutine PCA

18.3 Demo programs

18.3.1 Console program

Program pcatest.pas (located in demo\console\curfit) performs a prin-
cipal component analysis on a set of 4 variables (Example taken from: P.
DAGNELIE, Analyse statistique à plusieurs variables, Presses Agronomiques
de Gembloux, Belgique, 1982). The program prints:

• The mean vector and variance-covariance matrix of the original vari-
ables

• The correlation coefficients between the original variables

• The eigenvalues and eigenvectors of the correlation matrix

• The correlation coefficients between the principal factors and the orig-
inal variables

• The values of the principal factors for each point

It may be seen that:

• High correlations exist between the original variables, which are there-
fore not independent

• According to the eigenvalues, the last two principal factors may be
neglected since they represent less than 11 % of the total variance. So,
the original variables depend mainly on the first two factors

• The first principal factor is negatively correlated with the second and
fourth variables, and positively correlated with the third variable

155

• The second principal factor is positively correlated with the first vari-
able

• The table of principal factors show that the highest scores are usually
associated with the first two principal factors, in agreement with the
previous results

18.3.2 BGI programs

These programs are located in demo\bgi\curfit

• Program regmult.pas performs a multilinear least squares fit with
Nvar = 4 independent variables, according to the following equation:

Y = B[0] + B[1] * X1 + B[2] * X2 + B[3] * X3 + B[4] * X4

The data are stored in a matrix X and a vector Y.

The parameter vector and variance-covariance matrix are declared as:

DimVector(B, Nvar);

DimMatrix(V, Nvar, Nvar);

The program calls procedure MulFit or SVDFit, then computes the
theoretical Y values:

for I := 1 to N do

begin

if ConsTerm then Ycalc[I] := B[0] else Ycalc[I] := 0.0;

for J := 1 to Nvar do

Ycalc[I] := Ycalc[I] + B[J] * XX[I,J];

end;

Note that this computation must be done before calling procedure
RegTest

The critical values of Student’s t and Snedecor’s F are computed for
the chosen probability Alpha by using the functions from chapter 5.

Tc := InvStudent(Test.Nu2, 1 - 0.5 * Alpha);

Fc := InvSnedecor(Test.Nu1, Test.Nu2, 1 - Alpha);

156

where Test.Nu1 and Test.Nu2 are the numbers of d.o.f., returned by
procedure RegTest.

The ouput shows the standardized residuals, equal to (yi− ŷi)/σ, where
σ is estimated by sr. They should be distributed according to the
standard normal distribution.

Due to the multi-dimensional nature of the relationship, a plot of y
as a function of the x’s is not possible. Rather, the program plots a
diagram of the observed and computed values of y, together with the
theoretical line ŷ = y.

• Program regpoly.pas performs a polynomial least squares fit. The
structure of the program is very similar to the previous one, with the
degree of the polynomial (Deg) playing the role of the number of vari-
ables (Nvar).

Here, only a vector X is needed to store the values of the indepen-
dent variable, since the powers of x are computed by the polynomial
regression routine PolFit.

The theoretical Y values are computed by means of function Poly,
studied in chapter 12.

The program plots the fitted curve by calling the plotting subroutine
PlotFunc. The function which is passed to this subroutine is defined
as:

function PltFunc(X : Float) : Float;

begin

PltFunc := Poly(X, B, Deg);

end;

The definition of procedure PlotFunc does not allow additional param-
eters for PltFunc. This is the only reason why the parameter vector B
is declared as a global variable.

18.3.3 GUI program

The program curfit.dpr, which we have already described in the previous
chapter, can also perform polynomial regression. This option is selected
from the ‘Compute / Select Model’ menu. The file regpol.dat, located in
demo\gui\curfit, is an example data file.

157

158

Chapter 19

Nonlinear regression

This chapter describes the procedures available in DMath for fitting mod-
els which are nonlinear with respect to their parameters. For instance, the
exponential model y = ae−bx is nonlinear with respect to the parameter b.

19.1 Theory

The regression model is:
y = f(x; a, b · · ·)

where f is a nonlinear function of the parameters a, b · · ·
Assume that we have a first estimate (a0, b0 · · ·) of the parameters. Let

us write the Taylor series expansion of y in the vicinity of this estimate:

y = y0 + y′a · (a− a0) + y′b · (b− b0) + · · ·

where:
y0 = f(x; a0, b0 · · ·)

y′a =
∂f

∂a
(x; a0, b0 · · ·)

y′b =
∂f

∂b
(x; a0, b0 · · ·)

· · · · · · · · · · · · · · · · · ·
The equation may be rewritten as:

y − y0 = y′a · (a− a0) + y′b · (b− b0) + · · ·

which corresponds to the linear regression problem:

z = J · δ

159

with:

z =


y1 − y0

1

y2 − y0
2

· · ·
yn − y0

n

 J =


y′a1 y′b1 · · ·
y′a2 y′b2 · · ·
· · · · · · · · ·
y′an y′bn · · ·

 δ =

 a− a0

b− b0

· · ·



where J is the Jacobian matrix, such that y′ai = ∂f(xi; a
0, b0 · · ·)/∂a etc.

Application of the linear regression relationships leads to:

δ = (J>J)−1(J>z) (19.1)

Knowing the correction vector δ, it is possible to compute better estimates
a and b of the parameters. The process is repeated until convergence of the
parameter estimates.

The method so described is known as the Gauss-Newton method. It is
usually combined with nonlinear optimization, usually Marquardt’s method,
in order to minimize the sum of squared residuals:

SSr =
n∑
i=1

(yi − ŷi)2 = Φ(a, b · · ·)

In this case, the gradient vector g and hessian matrix H of function Φ are
computed by the following relationships:

g = −J>z H = J>J (19.2)

so that the Gauss-Newton formula (19.1) becomes equivalent to the Newton-
Raphson formula for nonlinear optimization (p. 73).

Note that, in the previous formula:

1. g and H are scaled by a factor 1/2 since this factor cancels during the
computations.

2. The expression of H is only approximate, since a factor containing the
term (yi− ŷi) is neglected during the computation of the second partial
derivatives:

∂2Φ

∂a ∂b
=

n∑
i=1

[
∂ŷi
∂a

∂ŷi
∂b
− (yi − ŷi)

∂2ŷi
∂a ∂b

]

160

The residual variance is:

Vr =
SSr
n− p

where p is the number of parameters in the model.

It is still possible to compute r2 and F , as well as confidence intervals,
but their interpretation is less straightforward since the ANOVA relationship
(§ 17.1) does not hold for nonlinear models. In this case, r2 may be > 1 !
Moreover, the distribution of the parameters is only approximately described
by the Student distribution.

19.2 Monte-Carlo simulation

The distribution of the regression parameters may be simulated by the MCMC
method discussed in § 15.2 (p. 107).

Let β denote the vector of model parameters. According to Bayes’ the-
orem, the posterior probability density π(β) of these parameters is given
by:

π(β) =
L(β)P (β)∫
L(β)P (β)dβ

=
L(β)P (β)

N

where P (β) denotes the prior probability density of the parameters and
L(β) denotes the likelihood, i.e. the probability of observing the experimental
results (xi, yi) given the parameters.

The integral which appears in the denominator is usually too complex to
be calculated and is therefore treated as a normalizing constant N .

Assuming that, for a given β, the residuals (yi − ŷi) are identically and
independently distributed according to a normal distribution with variance
σ2, the likelihood is given by:

L(β) =
n∏
i=1

(
1

σ
√

2π
exp

[
−(yi − ŷi)2

2σ2

])

If we choose a uniform prior probability P (β) over an interval B, the
posterior probability becomes:

π(β) = C
n∏
i=1

exp

[
−(yi − ŷi)2

2σ2

]

where C is a constant.

161

In order to use the Metropolis-Hastings algorithm, as described in chapter
15.2, we define the function:

F (β) =


−2 ln π(β)

C
=
∑n
i=1(yi − ŷi)2 if β ∈ B

∞ otherwise

(19.3)

It is the same objective function than for the nonlinear regression algo-
rithm, except that it is bounded on the interval B.

19.3 Regression procedures

These procedures are defined in unit unlfit.

19.3.1 Optimization methods

DMath offers three deterministic optimizers: Marquardt, Simplex and BFGS
(see chapter 10) and two stochastic optimizers: Simulated Annealing and
Genetic Algorithm (see chapter 15)

The Marquardt method is selected by default. This selection can be
changed with the statement SetOptAlgo(Algo) where Algo may have one
of the following values:

NL MARQ for Marquardt
NL SIMP for Simplex
NL BFGS for BFGS
NL SA for Simulated Annealing
NL GA for Genetic Algorithm

The current algorithm is returned by function GetOptAlgo

19.3.2 Maximal number of parameters

By default, the maximal number of regression parameters is set to 10. This
value may be changed with the statement SetMaxParam(N) where N is a
number up to 255. Function GetMaxParam returns the current value.

19.3.3 Parameter bounds

It is assumed that each regression parameter varies within an interval [a, b].
By default, this interval is set to [−106, 106] which is way too large for most
applications. It is possible to change this interval with the statement:

162

SetParamBounds(I, ParamMin, ParamMax)

where I is the index of the parameter and ParamMin and ParamMax are
the bounds.

Procedure GetParamBounds(I, ParamMin, ParamMax) returns the bounds
for the parameter of index I.

Defining realistic intervals for the parameters is essential when using
stochastic optimizers.

19.3.4 Check of parameters

Function NullParam(B) returns True if at least one of the components of
vector B is null. This function can be used to check if the parameters heve
been initialized properly.

19.3.5 Nonlinear regression

Nonlinear regression is performed by the two procedures:

• NLFit(RegFunc, DerivProc, X, Y, Lb, Ub, MaxIter, Tol, B, FirstPar,

LastPar, V) for unweighted regression

• WNLFit(RegFunc, DerivProc, X, Y, S, Lb, Ub, MaxIter, Tol, B,

FirstPar, LastPar, V) for weighted regression

where:

• RegFunc is the function to be fitted, defined as:

function RegFunc(X : Float; B : TVector) : Float;

where X is the independent variable and B the vector of regression pa-
rameters. This function is of type TRegFunc.

• DerivProc is the procedure used to compute the partial derivatives of
the regression function with respect to the parameters. It is defined as:

procedure DerivProc(X, Y : Float; B, D : TVector);

where D is the vector of derivatives at point (X, Y) (one row of the
Jacobian). This procedure is of type TDerivProc.

163

Viatcheslav
Sticky Note
X and Y contain experimental data;
Lb and Ub: initial and ending indicis in these data (in that example, 1 to N);
B initially contains initial guesses for parameters and at the end - result; FirstPar and LastPar - dimentions of array of Parameters; in example program 1 and 2 (that is, 1-based array). Finally, V is inverse Jakobian matrix; it should be allocated, but does not need any initialisation (it has dimentions [FirstPar..LastPar, FirstPar..LastPar].

• X[Lb..Ub], Y[Lb..Ub] are the point coordinates and S[Lb..Ub] are
the standard deviations

• MaxIter is the maximum number of iterations for the optimization
procedure

• Tol is the required precision for the regression parameters

• B[FirstPar..LastPar] is the vector of fitted parameters

• V[FirstPar..LastPar, FirstPar..LastPar] is the inverse matrix (J>J)
−1

19.3.6 Monte-Carlo simulation

The statistical distribution of the regression parameters is simulated by the
following procedures:

• SimFit(RegFunc, X, Y, Lb, Ub, B, FirstPar, LastPar, V) for un-
weighted regression

• WSimFit(RegFunc, X, Y, S, Lb, Ub, B, FirstPar, LastPar, V) for
weighted regression

where the parameters have the same meaning than in the nonlinear re-
gression procedures, except that here V is the variance-covariance matrix.

The results of the last simulation cycle are saved in an ASCII file. The
name of this file may be defined by the statement SetMCFile(FileName).
The default file name is mcmc.txt

19.4 Demo programs

These BGI programs are located in the demo\bgi\curfit subdirectory.

• Program regnlin.pas performs a nonlinear least squares fit of the
exponential model:

y = ae−bx

The partial derivatives used to compute the Jacobian are:

∂y

∂a
= e−bx

∂y

∂b
= −axe−bx

164

Initial estimates of the parameters B are obtained by linearization:

ln y = ln a− bx

However, this transformation modifies the standard deviations of the
independent variables:

σ(ln y) ≈ d ln y =
dy

y
≈ σ(y)

y

It is therefore recommended to use weighted linear regression for this
step.

Subroutine ApproxFit selects the data points for which the transforma-
tion is appropriate (i. e. y > 0) and stores the transformed coordinates
and their standard deviations in 3 vectors X1, Y1, S1 which are passed
to the weighted linear regression subroutine WLinFit. The fitted pa-
rameters are returned in vector A[0..1]. They are then transformed
back to the original form of the model:

B[1] := Exp(A[0]);

B[2] := - A[1];

Marquardt’s method is then used to perform nonlinear minimization of
the residual sum of squares, by means of subroutine NLFit. Function
RegFunc and procedure DerivProc are defined as follows:

function RegFunc(X : Float; B : TVector) : Float;

begin

RegFunc := B[1] * Exp(- B[2] * X);

end;

procedure DerivProc(X, Y : Float; B, D : TVector);

begin

D[1] := Exp(- B[2] * X);

D[2] := - B[1] * X * D[1];

end;

Since the parameter lists of these procedures cannot be modified, the
other variables which they must access are made global.

165

The results of the minimization are printed as with the linear regression
programs, except that the correlation coefficients are shown only if
r ≤ 1.

The program may be adapted to another regression model by changing
the following parts:

– the function name (constant FuncName)

– the constants FirstPar and LastPar which define the bounds of
the parameter array B

– the subroutine ApproxFit which computes the initial estimates of
the parameters

– the definition of the regression model in function RegFunc

– the definition of derivatives in subroutine DerivProc

• Program mcsim.pas simulates the posterior distribution of the regres-
sion parameters for the previous exponential model.

The settings for the MCMC procedure are defined as follows:

const

NCycles = 10; { Number of cycles }

MaxSim = 1000; { Max nb of simulations at each cycle }

SavedSim = 1000; { Nb of simulations to be saved }

MCFile = ’mcsim.txt’; { File for storing simulation results }

The algorithm is initialized with:

InitMHParams(NCycles, MaxSim, SavedSim);

SetMCFile(MCFile);

Proper intervals are defined for the two parameters:

SetParamBounds(1, 100, 1000);

SetParamBounds(2, 0.1, 1);

The SimFit procedure is then called. After the computation is done,
the program plots a graph showing the distribution of the parameters.

166

Chapter 20

Library of nonlinear regression
models

DMath has a set of predefined nonlinear regression models which can be
fitted just like the polynomial or multilinear models.

At this time, the following models are implemented:

• Rational fractions

• Sums of exponentials

• Increasing exponential

• Exponential + linear

• Logistic equations

• Power function

• Gamma distribution

• Michaelis equation

• Integrated Michaelis equation

• Hill equation

• Acid-base titration curve

167

20.1 Common features

20.1.1 Procedures

For each model, two fitting procedures are provided, for unweighted and
weighted regression:

• <model>Fit(X, Y, Lb, Ub, [...], MaxIter, Tol, B, V)

• W<model>Fit(X, Y, S, Lb, Ub, [...], MaxIter, Tol, B, V)

where:

• <model> stands for model name

• X[Lb..Ub], Y[Lb..Ub] are the point coordinates and S[Lb..Ub] are
the standard deviations

• [...] stands for the additional parameters required by some models

• MaxIter is the maximum number of iterations for the optimization
procedure

• Tol is the required precision for the regression parameters

• B is the vector of fitted parameters

• V is the inverse matrix

In addition, there exists a function <model>Fit Func(X, B) which re-
turns the value of the fitted function at point X, given the parameters B. This
function should be called after the model has been fitted.

20.1.2 Optimization methods and initial parameters

As with the general nonlinear regression procedures studied in the previ-
ous chapter, the specific procedures can use the three local optimizers (Mar-
quardt, BFGS, simplex) and the two global ones (simulated annealing and ge-
netic algorithm), according to the choice performed by procedure SetOptAlgo.

Moreover, the maximal number of regression parameters and their bounds
can still be modified by using procedures SetMaxParam and SetParamBounds,
as described in the previous chapter.

168

If a local optimizer is selected, the fitting procedure will look at the
current values of the regression parameters B. If all these values are non-
zero, they will be used to start the algorithm. Otherwise, a built-in specific
procedure will be called to generate approximate starting values (most often,
using a linearized form of the model).

If a global optimizer is selected, the initial parameters will be randomly
chosen within the parameter bounds.

20.2 Regression models

20.2.1 Rational fractions

The model has the form:

y =
p0 + p1x+ p2x

2 + · · ·+ pd1x
d1

1 + q1x+ q2x2 + · · ·+ qd2x
d2

The fitted parameters are:

B0 = p0 B1 = p1 B2 = p2 · · · Bd1 = pd1

Bd1+1 = q1 Bd1+2 = q2 · · · Bd1+d2 = qd2

where d1 and d2 are the degrees of the numerator and denominator, respec-
tively.

The fitting procedures are defined in unit ufracfit :

• FracFit(X, Y, Lb, Ub, Deg1, Deg2, ConsTerm, MaxIter, Tol, B,

V)

• WFracFit(X, Y, S, Lb, Ub, Deg1, Deg2, ConsTerm, MaxIter, Tol,

B, V)

where Deg1, Deg2 are the degrees of the numerator and denominator,
and ConsTerm is a boolean indicator which flags the presence of the constant
term p0.

The regression function is FracFit Func(X, B)

169

20.2.2 Sums of exponentials

The model has the form:

y = Y0 + A1e
−a1x + A2e

−a2x + · · ·

The fitted parameters are:
B0 = Y0

B1 = A1 B2 = a1

· ·

B2i−1 = Ai B2i = ai i = 1..Nexp

where Nexp is the number of exponentials.

The fitting procedures are defined in unit uexpfit :

• ExpFit(X, Y, Lb, Ub, Nexp, ConsTerm, MaxIter, Tol, B, V)

• WExpFit(X, Y, S, Lb, Ub, Nexp, ConsTerm, MaxIter, Tol, B, V)

where Nexp is the number of exponentials, and ConsTerm is a boolean
indicator which flags the presence of the constant term Y0.

The regression function is ExpFit Func(X, B)

20.2.3 Increasing exponential

The model has the form:

y = Ymin + A(1− e−kx)

The fitted parameters are:

B0 = Ymin B1 = A B2 = k

The fitting procedures are defined in unit uiexpfit :

• IncExpFit(X, Y, Lb, Ub, ConsTerm, MaxIter, Tol, B, V)

• WIncExpFit(X, Y, S, Lb, Ub, ConsTerm, MaxIter, Tol, B, V)

where ConsTerm is a boolean indicator which flags the presence of the
constant term Ymin.

The regression function is IncExpFit Func(X, B)

170

20.2.4 Exponential + Linear

The model has the form:

y = A(1− e−kx) +Bx

The fitted parameters are:

B0 = A B1 = k B2 = B

The fitting procedures are defined in unit uexlfit :

• ExpLinFit(X, Y, Lb, Ub, MaxIter, Tol, B, V)

• WExpLinFit(X, Y, S, Lb, Ub, MaxIter, Tol, B, V)

The regression function is ExpLinFit Func(X, B)

20.2.5 Logistic functions

The model has the form:

y = A+
B − A

1− e−ax+b

The fitted parameters are:

B0 = A B1 = B B2 = a B3 = b

The generalized logistic function has the form:

y = A+
B − A

(1− e−ax+b)n

with the additional parameter B4 = n

The fitting procedures are defined in unit ulogifit :

• LogiFit(X, Y, Lb, Ub, ConsTerm, General, MaxIter, Tol, B, V)

• WLogiFit(X, Y, S, Lb, Ub, ConsTerm, General, MaxIter, Tol, B,

V)

where ConsTerm is a boolean indicator which flags the presence of the
constant term A, and General is a boolean indicator which selects the gen-
eralized logistic.

The regression function is LogiFit Func(X, B)

171

Viatcheslav
Sticky Note
Here is an error in description (but not in code!). Denominator is 1+exp(-ax+b) and not 1-exp(-ax+b), in both cases.

20.2.6 Power function

The model has the form:

y = Axn

The fitted parameters are:

B0 = A B1 = n

The fitting procedures are defined in unit upowfit :

• PowFit(X, Y, Lb, Ub, MaxIter, Tol, B, V)

• WPowFit(X, Y, S, Lb, Ub, MaxIter, Tol, B, V)

The regression function is PowFit Func(X, B)

20.2.7 Gamma distribution

The model has the form:

y = a(x− b)c exp

[
−x− b

d

]

The fitted parameters are:

B1 = a B2 = b B3 = c B4 = d

The fitting procedures are defined in unit ugamfit :

• GammaFit(X, Y, Lb, Ub, MaxIter, Tol, B, V)

• WGammaFit(X, Y, S, Lb, Ub, MaxIter, Tol, B, V)

The regression function is GammaFit Func(X, B)

172

20.2.8 Michaelis equation

The model has the form:

y =
Ymaxx

Km + x

The fitted parameters are:

B0 = Ymax B1 = Km

where Km is the Michaelis constant.

This equation is widely used in enzyme kinetics, with x being the sub-
strate concentration and y the reaction rate. Therefore, Ymax is the maximal
velocity, such that Ymax = kcate0 where kcat is the catalytic constant and e0

the total enzyme concentration.

The fitting procedures are defined in unit umichfit :

• MichFit(X, Y, Lb, Ub, MaxIter, Tol, B, V)

• WMichFit(X, Y, S, Lb, Ub, MaxIter, Tol, B, V)

The regression function is MichFit Func(X, B)

20.2.9 Integrated Michaelis equation

The integrated Michaelis equation is the solution to the differential equation:

dp

dt
=
Ymax(s0 − p)
Km + s0 − p

with the initial condition: p = 0 at t = 0.

It is also used in enzyme kinetics, with p being the product concentration
at time t and s0 the initial substrate concentration.

The solution is expressed in terms of Lambert’s W-function, studied in
chapter 4:

p = s0 −KmW

[
s0

Km

exp

(
s0 − kcate0t

Km

)]
where e0 is the total enzyme concentration. The independent variable may
be t, s0 or e0.

The fitting procedures are defined in unit umintfit :

• MintFit(X, Y, Lb, Ub, MintVar, Fit S0, MaxIter, Tol, B, V)

173

• WMintFit(X, Y, S, Lb, Ub, MintVar, Fit S0, MaxIter, Tol, B,

V)

where:

• MintVar denotes the independent variable (may be Var T, Var S or
Var E)

• Fit S0 indicates if s0 must be fitted (for Var T or Var E only)

So, the fitted parameters are as follows:

Indep. var. MintVar B0 B1 B2

t Var T s0 Km Ymax
s0 Var S Km Ymaxt
e0 Var E s0 Km kcatt

The regression function is MintFit Func(X, B)

20.2.10 Hill equation

The Hill equation can be viewed as an extension of the Michaelis equation:

y = A+
B − A

1 + (K/x)n

The fitted parameters are:

B0 = A B1 = B B2 = K B3 = n

The fitting procedures are defined in unit uhillfit :

• HillFit(X, Y, Lb, Ub, ConsTerm, MaxIter, Tol, B, V)

• WHillFit(X, Y, S, Lb, Ub, ConsTerm, MaxIter, Tol, B, V)

where ConsTerm is a boolean indicator which flags the presence of the
constant term A

The regression function is HillFit Func(X, B)

174

20.2.11 Acid-base titration curve

The model has the form:

y = A+
B − A

1− 10pKa−x

The fitted parameters are:

B0 = A B1 = B B2 = pKa

It is used in chemistry, where x is the pH, y is some property (e.g. ab-
sorbance) which depends on the ratio of the acidic and basic forms of a
compound, A is the property for the pure acidic form, B is the property for
the pure basic form and pKa is the acidity constant.

The fitting procedures are defined in unit upkfit :

• PKFit(X, Y, Lb, Ub, MaxIter, Tol, B, V)

• WPKFit(X, Y, S, Lb, Ub, MaxIter, Tol, B, V)

The regression function is PKFit Func(X, B)

20.3 Demo programs

20.3.1 BGI programs

• The following programs are located in demo\bgi\regmodel:

Program Model Data files Ref.
regfrac.pas Rational fraction frac.dat (1)
regexpo.pas Sum of exponentials iv2.dat (2)

oral1.dat (2)
oral2.dat (2)

regiexpo.pas Increasing exponential iexpo.dat (1)
regexlin.pas Exponential + linear exlin.dat (1)
reglogi.pas Logistic function logist.dat (3)
regamma.pas Gamma distribution gamma.dat (4)
regmich.pas Michaelis equation michael.dat (1)
regmint.pas Integrated Michaelis equation michint.dat (1)
reghill.pas Hill equation hill.dat (1)

The data were taken from the following references:

175

Viatcheslav
Sticky Note
Agai error in description. Denominator:
1+10^(pKa-x)

1. Enzyme kinetic data from the author’s laboratory

2. Pharmacokinetic data from M. GIBALDI & D. PERRIER, Phar-
macokinetics, 2nd edition, Dekker 1982

3. Biochemical data from S. HUET et al., Statistical Tools for Non-
linear Regression, Springer 1996

4. Example provided by Chris Rorden

Each program reads the data file, then sets the indices of the parame-
ters, the maximal number of regression parameters and the parameter
bounds. For instance, for the rational fraction:

if ConsTerm then FirstPar := 0 else FirstPar := 1;

LastPar := Deg1 + Deg2;

SetMaxParam(LastPar);

for I := 0 to LastPar do

SetParamBounds(I, -1000, 1000);

where FirstPar and LastPar are the indices of the first and last re-
gression parameters.

The program then fits the model and plots the resulting curve.

• Program nist.pas, located in demo\bgi\nist, performs a validation
of some of the regression routines in DMath by using reference data
from the NIST (National Institute of Standards and Technology, http:
//www.itl.nist.gov/div898/strd/general/dataarchive.html).

The best results are obtained in extended precision. The program uses
a specific unit, umodels.pas which defines the regression models and
calls the appropriate regression routines.

For each model, the precision of the fit is estimated, for each fitted
parameter, by computing the relative difference εi between the value
found by the program and the reference value given by the NIST. The
highest relative difference εmax = max(|εi|) is then selected to compute
the precision as p = − log10 εmax, which corresponds approximately
to the number of correct digits found by the program. A plot of the
precision obtained for the different models is displayed.

176

According to the NIST, a precision of at least 4 digits is acceptable.
In our tests, precisions ranging from 4 to 14 digits were obtained by
selecting the algorithms as follows:

– for multilinear and polynomial regressions, the Singular Value De-
composition (SVD) algorithm was used, with a threshold for the
singular values set at N * MachEp where N is the number of points
(see paragraph 9.8 for details).

– for nonlinear regression, the Simplex algorithm was applied first,
followed by Marquardt’s method. The initial values of the pa-
rameters were computed by the built-in DMath routines. The
tolerance for the fitted parameters was the same than for SVD.

The results are saved in a file nist.out. For each model, the relative
difference (εi) is computed for:

– the regression parameters bi

– their standard deviations si

– the residual standard deviation sr

– the coefficient of determination r2

– the variance ratio F

Note that reference values for the last two tests are not available for all
models.

20.3.2 GUI program

Program curfit.dpr, already studied in the previous chapters, can fit any
of the above models by nonlinear regression. The options specific to these
models are the following:

• Compute / Select Model : selects the regression model.

• Compute / Select Algorithm : selects the regression algorithm.

Example data files are provided in demo\bgi\regmodel.

177

178

Chapter 21

Complex numbers and
functions

This chapter describes the complex functions available in DMath. Most
of them are adapted from the Delphi library ComplexMath by E. F. Glynn
(http://www.efg2.com/Lab/Mathematics/Complex/index.html). They are
defined in the unit ucomplex.

21.1 Introduction to complex numbers

21.1.1 Definitions

A complex number Z is a pair of real numbers:

Z = (X, Y)

It is related to the coordinates of a point M in the plane (called the
complex plane in this case).

Complex addition and subtraction are defined as for vectors:

Z1 = (X1, Y1)

Z2 = (X2, Y2)

Z1 + Z2 = (X1 +X2, Y1 + Y2)

Z1 − Z2 = (X1 −X2, Y1 − Y2)

A complex number may also be written as Z = X + iY where i is the
number (0,1). This notation defines the rectangular form of the complex.

179

The coordinates X and Y are often called the real part and the imaginary
part, noted respectively <(Z) and =(Z).

The complex product is defined as:

Z1 · Z2 = (X1X2 − Y1Y2, X1Y2 + Y1X2)

It is related to the rotation of vectors in the plane.

The complex product is commutative, i. e. Z1Z2 = Z2Z1

The number i is such that i2 = (0, 1) · (0, 1) = (−1, 0) = −1

Every complex Z 6= 0 has an inverse Z−1 for the multiplication.

21.1.2 Polar form

A complex number Z = X + iY can also be written as R(cos θ + i sin θ),
where:

• R is the norm of the vector
−−→
OM , also called the modulus or the absolute

value of the complex number and noted |Z|

• θ is the angle between the Ox axis and the vector
−−→
OM , counted in the

interval] − π, π]. It is often called the argument or the phase of the
complex number.

This notation defines the polar form of the complex number.

We have the following relationships:

R =
√
X2 + Y 2 θ = arctan

Y

X
= arctan 2(Y,X)

X = R cos θ Y = R sin θ

21.1.3 Exponential form

It has been shown that the exponential function can be extended to complex
numbers, and that:

exp(iθ) = cos θ + i sin θ

So, the notation R(cos θ + i sin θ) is equivalent to R exp(iθ), where all the
classical properties of the exponential apply, for instance:

Z1 = R1 exp(iθ1) , Z2 = R2 exp(iθ2) ⇒ Z1Z2 = R1R2 exp[i(θ1 + θ2)]

180

21.2 Type definition

Type Complex is defined in unit utypes as:

type Complex = record

X, Y : Float;

end;

So, a complex variable Z is declared as follows:

var Z : Complex;

Its real and imaginary parts are Z.X and Z.Y

The complex variables can be initialized, for instance:

var Z : Complex = (X : 1; Y : 2); { Z = 1 + 2i }

You can also declare arrays of complexes and initialize them, for instance:

var Z : array[1..2] of Complex =

((X : 1; Y : 2),

(X : 2; Y : 1));

21.3 Error handling

Function MathErr() returns the error code from the last function evaluation,
as described in paragraph 3.1.

21.4 Number construction

The following functions create a complex number from either its rectangular
or polar coordinates:

• Function Cmplx(X, Y) returns the complex number X + iY

• Function Polar(R, Theta) returns the complex number R(cos θ +
i sin θ)

Functions CReal(Z) and CImag(Z) return the real part and the imaginary
part of their complex argument Z.

181

21.5 Sign and exchange

• Function CSgn(Z) returns the sign of the complex Z, such that:

CSgn(Z) =

{
1 if <(Z) > 0 or <(Z) = 0 and =(Z) > 0
−1 if <(Z) < 0 or <(Z) = 0 and =(Z) < 0

This function is used to determine in which half-plane (‘left’ or ‘right’)
of the complex plane the number Z is located.

• Procedure CSwap(Z1, Z2) exchanges the two complex numbers Z1 and
Z2.

21.6 Modulus and argument

• Functions CAbs(Z) and CArg(Z) give, respectively, the modulus and
the argument of the complex Z, i. e. the numbers R and θ such that
Z = R exp(iθ) with θ ∈]− π, π].

• Function CAbs2(Z) returns the squared modulus of Z, i. e. X2 + Y 2.

21.7 Other functions

• Function CConj(Z) returns the conjugate of Z i.e. Z̄ = X − iY

• Function CNeg(Z) returns the opposite −Z.

• Function CInv(Z) returns the inverse 1/Z.

21.8 Arithmetic functions

• Functions CAdd(Z1, Z2), CSub(Z1, Z2), CMul(Z1, Z2), CDiv(Z1, Z2)

return respectively the sum Z1 +Z2, difference Z1−Z2, product Z1 ∗Z2

and quotient Z1/Z2 of their complex arguments.

• Function CSqr(Z) returns the square Z2.

182

21.9 Polynomials

Function CPoly(Z, Coef, Deg) evaluates the polynomial:

P (Z) = Coef[0] + Coef[1] · Z + Coef[2] · Z2 + · · ·+ Coef[Deg] · ZDeg

where Z is complex and the coefficients are real.

21.10 Logarithm and exponential

It is obvious from the relationship below that the complex logarithm is a
multi-valued function:

Z = R · exp(iθ) = R · exp [i (θ + 2kπ)] ⇒ lnZ = lnR + i (θ + 2kπ)

• Function CLn(Z) returns the principal part of the logarithm, i. e. the
value corresponding to k = 0 and θ ∈]− π, π].

• Function CExp(Z) returns the exponential of Z, according to:

exp(X + iY) = eX(cosY + i sinY)

21.11 Power functions

• Function CIntPower(Z, N) computes ZN , where N is integer, by re-
peated multiplications with Legendre’s algorithm to minimize the num-
ber of operations. For instance, Z8 is computed as Z2 = Z · Z,
Z4 = Z2 · Z2 and Z8 = Z4 · Z4, hence 3 multiplications instead of
7.

• Function CRealPower(Z, X) computes ZX , whereX is real, by DeMoivre’s
theorem :

ZX = [R exp(iθ)]X = RX exp(Xiθ) = RX(cosXθ + i sinXθ)

If the fractional part of X is null, the function CIntPower is called.

• Function CPower(Z1, Z2) computes (Z1)Z2 , where both Z1 and Z2 are
complexes, by the formula:

(Z1)Z2 = exp(Z2 lnZ1)

183

21.12 Complex roots

According to the following relationship:

Z = R · exp(iθ) = R · exp [i (θ + 2kπ)] ⇒ Z1/n = R1/n · exp

[
i

(
θ

n
+

2kπ

n

)]

a complex number has n distinct n-th roots, corresponding to k = 0 · · · (n−1)

• Function CRoot(Z, K, N) returns the K-th N -th root of the complex
number Z (K and N are integers).

• Function CSqrt(Z) returns the first square root of the complex number
Z. It is therefore equivalent to CRoot(Z, 0, 2).

21.13 Trigonometric functions

The following functions are available (where Z = X + iY):

Function Formula
CSin(Z) sinX coshY + i cosX sinhY

CCos(Z) cosX coshY − i sinX sinhY

CTan(Z) sinX cosX+i sinhY coshY
cos2X+sinh2 Y

Z 6= π
2

+ kπ

CASin(Z)
arcsin(P −Q) + i csgn(Y − iX) ln(P +Q+

√
(P +Q)2 − 1)

P = 1
2

√
X2 + 2X + 1 + Y 2 Q = 1

2

√
X2 − 2X + 1 + Y 2

CACos(Z) π
2
− arcsin(Z)

CATan(Z) 1
2
[arctan(X, 1− Y)− arctan(−X, 1 + Y)] + 1

4
i ln X2+(Y+1)2

X2+(Y−1)2
Z 6= ±i

In addition, procedure CSinCos(Z, SinZ, CosZ) allows to calculate the
sine and cosine simultaneously, saving some computations if both functions
are needed.

21.14 Hyperbolic functions

The following functions are available (where Z = X + iY):

184

Function Formula
CSinh(Z) sinhX cosY + i coshX sinY

CCosh(Z) coshX cosY + i sinhX sinY

CTanh(Z) sinhX coshX+i sinY cosY
sinh2X+cos2 Y

Z 6= i
(
π
2

+ kπ
)

CASinh(Z) −i arcsin(iZ)

CACosh(Z) csgn[Y + i(1−X)] · i arccos(Z)

CATanh(Z) −i arctan(iZ) Z 6= ±1

In addition, procedure CSinhCosh(Z, SinhZ, CoshZ) allows to calculate
the hyperbolic sine and cosine simultaneously, saving some computations if
both functions are needed.

21.15 Gamma function

Function CLnGamma(Z) returns the natural logarithm of the Gamma function
for the complex argument Z.

21.16 Demo program

Program testcomp.pas, located in demo\console\complex, checks the accu-
racy of the complex functions. It is a slight modification of a Pascal program
written by E. Glynn.

The program defines an array of 20 complex numbers. The tests consist
mostly of applying a function to each number, then applying the reciprocal
function to the result, in order to retrieve the original number.

185

186

Chapter 22

Fractals and chaos

We will study here two examples of chaotic systems and fractal graphics:

• the Mandelbrot and Julia sets

• the quadratic iterator

22.1 Mandelbrot and Julia sets

22.1.1 Introduction

These sets are created by iteration of a function of complex variable z 7→
f(z) + c, where c is a complex constant. The present discussion is limited to
the power function f(z) = zp, where p is an integer or real exponent > 1.

22.1.2 The Mandelbrot set

This set, named after the mathematician Benôıt Mandelbrot, corresponds to
the case p = 2. More precisely, it is defined as the set of complex numbers c
for which the sequence:

z0 = c zn = z2
n−1 + c

converges to a finite value.

In practice, the sequence is iterated at each point c in the complex plane.
The points belonging to the set are given the same color, and the points
outside the set are given a color which depends on their divergence rate.

A global view of the Mandelbrot set is shown here:

187

• The Mandelbrot set is in white. It is comprised of several parts:

– a cardioid (heart-shaped curve, at right) which constitutes the
main part of the set. The ‘cusp’ of the cardioid is at (0.25, 0)

– a main disk of radius 0.25 centered at (-1, 0) and tangent to the
cardioid at (-0.75, 0)

– a straight ‘tip’ (leftmost part of the set), showing a mini-Mandelbrot
set at the abscissa -1.75

The set is covered with ‘bulbs’ of various sizes emitting filaments. The
major bulbs are located at the poles of the cardioid. Each bulb is itself
covered with other bulbs, while the filaments give rise to small copies
(more or less distorted) of the set. All these structures are repeated at
all scales.

Mathematicians have shown that:

1. the Mandelbrot set is included in the circle of radius 2: the com-
plex numbers having a modulus higher than 2 don’t belong to the
set.

2. the set is connected: all its parts are linked by filaments which
can be infinitely thin and therefore not visible on the pictures.

• The immediate vicinity of the set is plotted in dark colors, using the
distance estimator method which will be described later.

188

• The outside of the set contains the points for which the sequence tends
towards infinity. It is colored according to the number of iterations
needed to reach a value called the escape radius. When a point gets
closer to the set, the number of iterations increases, and it increases
faster as the point approaches the set.

22.1.3 The Julia sets

These sets, named after the mathematician Gaston Julia, are defined in a
manner similar to the Mandelbrot set, except that here the parameter c is
constant and the sequence is initialized with the coordinates zpixel of the
point:

z0 = zpixel zn = z2
n−1 + c

So, there is a Julia set for each value of the parameter c.

It has been shown that:

• When the point c belongs to the Mandelbrot set, the Julia set is con-
nected, i. e. as a whole.

• Otherwise, the Julia set is made of an infinity of similar parts.

22.1.4 Variation of the exponent

Integer exponent

For the integer values of p (> 2) the Mandelbrot set is centered at (0,0) and
is comprised of (p−1) symmetrical lobes. When p is even, one of these lobes
is located along the negative Ox axis. There is no such lobe when p is odd.

The corresponding Julia sets have a symmetry of order p.

Non-integer exponent

The pictures display discontinuities. This is due to the fact that, for non-
integer values of p, zp is evaluated as exp(p ln z). But the logarithm of a
complex number is a multi-valued function. The discontinuities arise from
the choice of a single value at each point.

It is interesting to study the transition from an odd integer p to an even
integer while following the intermediate values. We can observe the progres-
sive formation of the lobe located along the Ox axis. This lobe is formed by
fusion of multiple ‘buds’ which develop progressively and are surrounded by
complex structures.

189

22.1.5 Theoretical aspects

Iteration of the complex function

The sequence zn = (zn−1)p + c is iterated until the modulus |zn| exceeds the
escape radius, or the iteration number n exceeds a predefined value. In the
last case, the point is considered as belonging to the set.

The distance estimator

As its name implies, this parameter estimates the distance between the tested
point and the set. It is computed by using the fact that the iteration number
required to reach the escape radius increases faster as the point approaches
the set. This rate is estimated by the derivative of the iterated function.

For the Mandelbrot set, the function depends on the parameter c. We
must then derive with respect to this parameter:

z′n = p · (zn−1)p−1 · z′n−1 + 1 z′0 = 0

For the Julia set, the parameter c is constant. The derivative reduces to:

z′n = p · (zn−1)p−1 · z′n−1 z′0 = 1

At the end of the iterations, the distance estimator is given by:

D =
p|zn| ln |zn|
|z′n|

The weaker this value, the closer we are to the set.

The continuous dwell method

As we have shown previously, points outside the set are colored according
to the iteration number required to reach the escape radius. At the vicinity
of the set, this number varies rapidly from one point to another, resulting
in a color mixing which makes the picture look ‘fuzzy’. To avoid this effect,
it is possible to ‘smooth’ the variation of iteration numbers by means of a
logarithmic transform. The formula used here is the following:

Dwell = n+ logp
ln Esc

ln |zn|

where Esc denotes the escape radius. The function logp is the base-p
logarithm, such that logp z = ln z/ ln p

190

22.1.6 Programming aspects

We will describe here some of the techniques used in the demo program
mandel.

Picture format

The picture is 640 × 480, 32 bits. It is centered at (x0, y0). The zoom
is defined by the ZoomFact parameter, such that the value ZoomFact = 1
corresponds to a vertical scale of 4, resulting in a horizontal scale of 4 ×
(640/480) ≈ 5, 33. The vertical scale for a given ZoomFact value is therefore
(4 / ZoomFact). If Scale denotes the pixel scale, we can define a scale factor:

ScaleFact := 4 / (Scale * ZoomFact);

This factor represents the distance between 2 pixels. So, the pixel coor-
dinates (Nx, Ny) of a point are converted to the algebraic coordinates (x, y)
by:

x := x0 + ScaleFact * (Nx - HalfPicWidth);

y := y0 - ScaleFact * (Ny - HalfPicHeight);

where HalfPicWidth and HalfPicHeight denote the half-width and half-
height of the picture, i. e. 320 and 240 in our case.

A complete scan of the picture (Image1) is performed with two loops:

for Ny := 0 to Pred(PicHeight) do

begin

yt := y0 - ScaleFact * (Ny - HalfPicHeight);

for Nx := 0 to Pred(PicWidth) do

begin

xt := x0 + ScaleFact * (Nx - HalfPicWidth);

Image1.Canvas.Pixels[Nx, Ny] := Mandelbrot(xt, yt);

end;

end;

where PicWidth and PicHeight denote the width and height of the pic-
ture, i. e. 640 and 480 in our case. The Mandelbrot function returns the
color of the point.

191

Computing the iterations

The Mandelbrot function performs the iterations at the point of algebraic
coordinates (xt, yt) by computing simultaneously the complex function zn
and its derivative z′n, according to the following code:

if Julia then

begin

c := Cmplx(c_X, c_Y);

z := Cmplx(xt, yt);

dz := Cmplx(1, 0);

end

else

begin

c := Cmplx(xt, yt);

z := Cmplx(0, 0);

dz := z;

end;

Iter := 0;

Module := CAbs(z);

while (Iter < MaxIter) and (Module < Esc) do

begin

zp1 := CRealPower(z, p1); { z^(p-1) }

zn := CMul(z, zp1);

zn.X := zn.X + c.X;

zn.Y := zn.Y + c.Y; { z(n+1) = z(n)^p + c }

dzn := CMul(zp1, dz); { Derivative : dz(n+1)/dc }

dzn.X := p * dzn.X;

dzn.Y := p * dzn.Y;

if not Julia then dzn.X := dzn.X + 1.0;

Module := CAbs(zn);

z := zn;

dz := dzn;

Inc(Iter);

end;

192

where:

• Julia indicates if we are computing a Julia set

• cJulia corresponds to the parameter c for the Julia set

• the functions Cmplx, CAbs, CMul have been described in the previous
chapter

• p1 = p - 1

The iterations can be terminated in two ways:

• If the iteration number reaches MaxIter, the point is considered as
belonging to the Mandelbrot set, and plotted in white:

if Iter = MaxIter then

begin

Result := clWhite;

Exit;

end;

This method does not ensure that the sequence converges since rig-
orously we should perform an infinite number of iterations! We take
the risk to include in the set some points located very closely to its
frontier. This will result a ‘fuzzy’ aspect on the graphic. In this case,
the solution is to increase MaxIter, at the expense of the computation
time.

• If the modulus of the complex number reaches the value of the escape
radius, the sequence diverges and the point does not belong to the set.
In this case, we compute the distance estimator and the continuous
dwell :

LnMod := Ln(Module); DMod := CAbs(dzn);

if DMod > 0.0 then Dist := p * Module * LnMod / DMod;

Dwell := Iter - Ln(LnMod) / Lnp + LLE;

where Lnp denotes the natural logarithm of p and LLE = logp(ln Esc)

The value of the escape radius has been fixed at 1010. Such a high value
is required by the distance estimator algorithm.

193

Color attribution

We use a simplified version of an algorithm described by Robert Munafo
(http://mrob.com/pub/muency/color.html). Its main features are the fol-
lowing:

• The colors are defined in the HSV (Hue, Saturation, Value) space.

• The value V is attributed according to the distance estimator, so that
the points close to the set appear in dark shades. This facilitates the
detection of the tiniest parts of the set, which may not be visible at a
given zooming.

• The hue H and saturation S are attributed according to the continuous
dwell.

22.1.7 Demo program

Program mandel.dpr, located in \demo\gui\mandel, plots the Mandelbrot
or Julia sets by using the algorithms described previously.

Compilation

It is recommended to build the program in extended precision to allow mag-
nifications up to 1017 (instead of 1014 in double precision). This can be done:

• from the IDE, by defining the symbol EXTENDEDREAL in the project
options, then build the program.

• from the command line, by:

dcc32 mandel.dpr -b -dEXTENDEDREAL

Choosing the ‘build’ option (-b) instead of ‘make’ will ensure that all
the relevant units are compiled with the same precision.

Creating the standard picture

When the program is launched for the first time, it displays the default
parameters for the classical Mandelbrot set:

194

p : exponent = 2
(X, Y) : coordinates of the center of the picture = (-0.75, 0)
Max. Iter. : maximal number of iterations = 200
Zoom Fact. : zoom factor = 1.75
Dist. Fact. : Distance estimator factor (for coloring) = -1
Color Fact. : factor which controls the color range = -2

Click on the ‘Graph’ button to start the computation. You will have to
wait until the picture is displayed.

Coloring methods

The picture is colored in the HSV (Hue, Saturation, Value) color space.

The value (luminosity) V is determined by the distance between the pixel
and the set. The points near the set are dark, while the set itself is white.
So, the contour of the set is always visible, even if the set itself is too tiny
to appear at the picture resolution. The luminosity is controlled by the
DistFact parameter and increases when the parameter increases.

The hue H and saturation S are determined by the number of steps
needed for the modulus of the complex number z to reach a predetermined
value. The color density is controlled by the ColorFact parameter : a high
(absolute) value means more colors on the picture. For a black and white
picture, set ColorFact to zero.

If ColorFact is positive, the alternance of color stripes surrounding the
set is made more obvious by darkening every other stripe. If ColorFact

is negative, this effect is suppressed, so that the colors appear more like a
continuous gradient.

Creating a new picture of the Mandelbrot set

1. Click on a point of the displayed picture: this point will become the
center of the new picture, and its coordinates will appear in the ‘X’
and ‘Y’ boxes.

2. If necessary, modify the MaxIter, ZoomFact, DistFact or ColorFact

values

3. Click on the ‘Graph’ button to start the picture generation.

195

Creating a new picture of a Julia set

1. Click on the ‘Mandelbrot/Julia’ button. The coordinates of the current
Mandelbrot picture will become the c parameter of the Julia set, ap-
pearing in the ‘Julia c parameter’ box. The old coordinates will become
zero, to ensure that the Julia set is centered at (0, 0).

2. If necessary, modify the MaxIter, ZoomFact, DistFact or ColorFact

values

3. Click on the ‘Graph’ button to start the picture generation.

Saving the picture

Click on the ‘Save file’ button and enter a name for the parameter file (*.par).
The parameters of the current picture will be saved in this file, and the
displayed picture will be saved in a bitmap file (*.bmp) having the same file
name.

The parameter file is a text file containing the following lines:

p

X

Y

MaxIter

ZoomFact

DistFact

ColorFact

c_X

c_Y

where c X and c Y are the coordinates of the c parameter for the Julia set.
These coordinates are always 0 for a Mandelbrot set, while the coordinates
(X, Y) are always 0 for a Julia set.

Loading a picture

Click on the ‘Open file’ button and select a parameter file. The parameters
will be displayed in the relevant boxes. If a matching bitmap exists it will
be displayed, otherwise the current picture will be erased.

22.1.8 Examples

A series of parameter files is provided to demonstrate some interesting aspects
of the Mandelbrot and Julia sets.

196

Mandelbrot sets with variable exponent

mandel 2 Classical Mandelbrot set, p = 2
mandel 3 Odd integer exponent: (p− 1) symmetry, no lobe on Ox
mandel 4 Even integer exponent: (p− 1) symmetry, lobe on Ox
mandel 3 5 Noninteger exponent: discontinuities and incomplete Ox lobe
mandel 3 85 Transition from odd exponent to even exponent, showing the

complex structures which give rise to the Ox lobe
mandel 3 85 a Zoom on the complex structures of the previous set

Julia sets

julia 2 a Connected Julia set: p = 2, c = (−0.75, 0)
julia 2 b Disconnected Julia set: p = 2, c = (−0.75, 0.1)
julia 5 Julia set: p = 5, symmetry of order p

Exploration of the seahorse valley

This region is located between the cardioid and the main disk of the classical
Mandelbrot set. The parameter files correspond to successive magnifications.

seahorse 01 The two sides of the valley
seahorse 02a West side (story ?)
seahorse 02b East side, showing a seahorse
seahorse 03 Zoom on the ‘tail’ of the seahorse
seahorse 03a Mini Mandelbrot set at the junction of two spirals
seahorse 04 Zoom on the miniset
seahorse 05 The seahorse valley of the miniset
seahorse 06 Spirals in the seahorse valley
seahorse 07 An ‘Embedded Julia Set’ (EJS) at the junction of 2 spirals
seahorse 08 Zoom on the EJS
seahorse 09 At the center of the EJS: the ‘nucleus’
seahorse 10 At the center of the nucleus: the ‘nucleolus’ ...
seahorse 11 ... showing a mini Mandelbrot set ...
seahorse 12 ... which is magnified here

Note: these pictures take a long time to generate, so be patient !

22.2 The quadratic iterator

The three programs located in demo\gui\quadrit demonstrate a chaotic
system: the quadratic iterator, also known as the logistic equation.

197

The system is defined by the relationship:

xn+1 = axn(1− xn)

According to the value of a the sequence may be:

• periodic (e.g. for a = 3.5 the period is 4)

• chaotic (e.g. a = 4)

• presenting an alternance of periodic and chaotic phases, a phenomenon
known as intermittency (e.g. a = 3.82812)

The programs can plot three types of diagrams:

• an orbit diagram (program orbit.dpr): the value of xn is plotted vs.
n. The initial value x0 can be specified by the user or chosen at random
(‘Rnd’ checkbox).

• a bifurcation diagram (program bifur.dpr): the values of xn are plot-
ted for each value of a (after an initial run of some hundred iterations).
The bifurcation diagram shows the progressive transition from order to
chaos via a period-doubling route as a increases. It also shows the ex-
istence of periodic regions inside the chaotic domain. Magnifying these
regions reveals a structure similar to the whole plot (i.e. the fractal
nature of the bifurcation diagram).

• a FFT diagram (program fft.dpr): the modulus of the Fast Fourier
Transform of the sequence xn is plotted as a function of the frequency.
The period of the sequence is equal to the inverse of the lowest frequency
giving a peak in the FFT.

Some examples of periodic/chaotic behavior are given here:

• The period-doubling route begins at a = 3:

a Period Frequency
3 2 0.5
3.5 4 0.25
3.55 8 0.125
3.566 16 0.0625

• The chaotic domain begins at a ≈ 3.57

198

• Some periodic regions inside the chaotic domain:

a Period Frequency
3.63 6 0.1666...
3.74 5 0.2
3.83 3 0.333...

22.3 Links

• http://hypertextbook.com/chaos/ : The Chaos Hypertextbook, by
Glenn Elert.

• http://shiny3d.de/mandelbrot-dazibao/Main/Main.htm : The Man-
delbrot Dazibao, by ‘Jark’. This site gives programs written in QBasic.
One of them has been the model of our Delphi program.

• http://mrob.com/pub/muency.html : Encyclopedia of the Mandel-
brot Set, by Robert Munafo. This site describes the coloring algorithm
used in our program.

• http://en.wikipedia.org/wiki/Mandelbrot_set : The Wikipedia
page for the Mandelbrot set.

• http://en.wikipedia.org/wiki/Julia_set : The Wikipedia page
for the Julia sets.

199

